-
Acoustic tweezer is a promising device for manipulating particles, which does not need contact does not cause damage, or requires transparent materials. They have diverse applications in cell separation, tissue engineering, and material assembly. To control particle movement, this technology relies on the exchange of momentum between the particle and the acoustic field, generating an acoustic radiation force. Achieving high-performance acoustic tweezers necessitates the precise shaping of the acoustic fields. Traditionally, there are mainly two types of acoustic tweezers: bulk acoustic wave (BAW) and surface acoustic wave (SAW). The SAW-based acoustic tweezer operates at high frequencies, realizing precise manipulation. The BAW-based acoustic tweezer operates at lower frequencies and requires artificial structure on the transducer surface to shape the field. However, the separation of the artificial structure from the transducer brings complexity and instability into the manipulation process. In this study, we propose a novel approach to overcoming these challenges, that is, using piezoelectric phononic crystal plates to integrate the transducer and acoustic artificial structure. By designing the thickness, periodicity, and electrode width of the piezoelectric phononic crystal plate, we can excite the A0 Lamb wave mode and the periodic resonant mode, resulting in a periodic gradient field and a periodic weak gradient field, respectively. These fields enable particle to be trapped or levitated on the surface. To validate this approach, an experimental device is constructed, and successful particle manipulation is achieved by using Lamb wave mode or periodic resonant mode through using the piezoelectric phononic crystal plate. This technological breakthrough serves as a crucial foundation and experimental validation for developing the compact, low-energy and high-precision acoustic tweezers.
-
Keywords:
- piezoelectric phononic crystals /
- acoustic radiation force /
- acoustic tweezers /
- particle manipulation
[1] Borgnis F E 1953 Rev. Mod. Phys. 25 653Google Scholar
[2] Takahi H, Yasutaka H, Akio A, Hideki N, Masahiko K, Naoki I 1993 J. Acoust. Soc. Am. 93 154Google Scholar
[3] Tatsuki F, Asier M, Bruce W, Thomas L H 2019 Appl. Phys. Lett. 115 064101Google Scholar
[4] Hirayama R, Martinez P D, Masuda N, Subramanian S 2019 Nature 575 320Google Scholar
[5] Smalley D E, Nygaard E, Squire K, Van W J, Rasmussen J, Gneiting S, Qaderi K, Goodsell J, Roger W, Lindsey M 2018 Nature 553 486Google Scholar
[6] Wiklund M, Radel S, Hawkes J J 2013 Lab. Chip. 13 25Google Scholar
[7] Gao Y, Harder R, Southworth S H, Guest J R, Huang X J, Yan Z J, Ocola L E, Yifat Y, Sule N, Ho P J 2019 Proc. Natl. Acad. Sci. U. S. A. 116 4018Google Scholar
[8] Ozcelik A, Rufo J, Guo F, Gu Y Y, Li P, Lata J, Huang T J 2018 Nat. Methods 15 1021Google Scholar
[9] Wixforth A 2003 Superlattice Microst. 33 389Google Scholar
[10] Strobl C J, Von G Z, Wixforth A 2004 IEEE T. Ultrason. Ferr. 51 1432Google Scholar
[11] Alzuaga S, Manceau J F, Bastien F 2005 J. Sound Vib. 282 151Google Scholar
[12] Wixforth A 2005 Methods Mol. Med. 114 121
[13] Alvarez M, Friend J R, Yeo L Y 2008 Langmuir 24 10629Google Scholar
[14] Shi J, Ahmed D, Mao X, Lin S C S, Lawit A, Huang T J 2009 Lab. Chip. 9 2890Google Scholar
[15] Li P Q, Zhou W, Peng B X, Zhang C Q, Zhu X F, Meng L, Wu J R, Zheng H R 2023 Phys. Rev. A 20 064003Google Scholar
[16] Huang Y Q, Das P K, Bhethanabotla V R 2021 Sens. Actuators Rep. 3 100041Google Scholar
[17] Wu J R 1991 J. Acoust. Soc. Am. 89 2140Google Scholar
[18] Lee J, Teh S Y, Lee A, Kim H H, Lee C, Shung K K 2009 Appl. Phys. Lett. 95 73701Google Scholar
[19] Marzo A, Seah S A, Drinkwater B W, Sahoo D R, Long B, Subramanian S 2015 Nat. Commum. 6 8661Google Scholar
[20] Melde K, Mark A G, Qiu T, Fischer P 2016 Nature 537 518Google Scholar
[21] Memoli G, Caleap M, Asakawa M, Sahoo D R, Drinkwater B W, Subramanian S 2017 Nat. Commun. 8 14608Google Scholar
[22] Li F, Cai F Y, Zhang L K, Liu Z Y, Li F, Meng L, Wu J R, Li J Y, Zhang X F, Zheng H R 2020 Phys. Rev. A 13 044077Google Scholar
[23] Li F, Cai F Y, Liu Z Y, Meng L, Qian M, Wang C, Cheng Q, Qian M L, Liu X, Wu J R, Li J Y, Zheng H R 2014 Phys. Rev. A 1 051001Google Scholar
[24] COMSOL, Sweden S https://cn.comsol.com/ [2023-11-21]
[25] He Z J, Jia H, Qiu C Y, Peng S S, Mei X F, Cai F Y, Peng P, Ke M Z, Liu Z Y 2010 Phys. Rev. Lett. 105 074301Google Scholar
[26] Gor’kov L P 1962 Sov. Phys. Dokl. 6 773Google Scholar
[27] Bruus H 2012 Lab Chip 12 1014Google Scholar
-
图 2 (a) 压电声子晶板色散曲线 (蓝色点线是A0模式, 红色点线是S0模式, 黑色实线是水线); (b) 不同厚度的压电声子晶板共振与频率的关系; (c) 压电声子晶体板共振声场分布, f1 = 0.998 MHz (左)和f2 = 1.072 MHz (右)
Figure 2. (a) Dispersion curve of the piezoelectric phononic crystal plate (Blue dotted line is A0 mode, red dotted line is S0 mode, and the solid black line is the water line); (b) resonance spectrum at normal incidence versus frequency for the piezoelectric phononic crystal plate with different heights; (c) resonant sound field distribution of the piezoelectric phononic crystal plate, f1 = 0.998 MHz (left) and f2 = 1.072 MHz (right).
图 3 共振频率不同时, PS微球在压电声子晶体周围受到的声辐射力分布 (颜色深浅表示声辐射力的大小, 箭头方向表示声辐射力的方向) (a) 共振频率f1; (b) 共振频率f2
Figure 3. Distribution of the acoustic radiation force of PS microspheres around the piezoelectric phononic crystal at the different frequency (The color represents the magnitude of the acoustic radiation force, and the direction of the arrow represents the direction of the acoustic radiation force): (a) At the first frequency f1; (b) at the second resonant frequency f2.
图 5 PS微球操控实验效果图 (a) 当压电声子晶体板未加载电信号时PS微球的初始状态; (b) 当压电声子晶体板加载共振频率为0.998 MHz的电信号时PS微球的状态; (c) 加载共振频率为1.072 MHz的电信号时PS微球的状态; (d) 图(c)侧视图
Figure 5. (a) State of the PS particles when the piezoelectric phononic crystal plate is not loaded with an electrical signal; (b) state of the PS particles when the piezoelectric phononic crystal plate is loaded with an electrical signal at a resonant frequency of 0.998 MHz; (c) the same as panel (b) but at a resonant frequency of 1.072 MHz; (d) side view of panel (c).
表 1 材料声学参数
Table 1. Material acoustic parameters.
材料特性 符号 数值 C11 15.6 C12 8.9 弹性系数Cpq/GPa C13 8.8 C33 13.2 C44 3.1 TJ-47 C66 3.4 e15 14.3 压电系数eip/(C·m–2) e31 4.9 e33 18.5 相对渗透系数$\varepsilon_{pq} $ $\varepsilon_{11} $ 960 $\varepsilon_{33} $ 870 密度/(kg·m–3) ρ 7800 纵波速度/(m·s–1) cl 2500 PS微球 横波速度/(m·s–1) ct 1300 密度/(kg·m–3) ρ 1080 水 纵波速度/(m·s–1) cl 1500 密度/(kg·m–3) ρ 1000 -
[1] Borgnis F E 1953 Rev. Mod. Phys. 25 653Google Scholar
[2] Takahi H, Yasutaka H, Akio A, Hideki N, Masahiko K, Naoki I 1993 J. Acoust. Soc. Am. 93 154Google Scholar
[3] Tatsuki F, Asier M, Bruce W, Thomas L H 2019 Appl. Phys. Lett. 115 064101Google Scholar
[4] Hirayama R, Martinez P D, Masuda N, Subramanian S 2019 Nature 575 320Google Scholar
[5] Smalley D E, Nygaard E, Squire K, Van W J, Rasmussen J, Gneiting S, Qaderi K, Goodsell J, Roger W, Lindsey M 2018 Nature 553 486Google Scholar
[6] Wiklund M, Radel S, Hawkes J J 2013 Lab. Chip. 13 25Google Scholar
[7] Gao Y, Harder R, Southworth S H, Guest J R, Huang X J, Yan Z J, Ocola L E, Yifat Y, Sule N, Ho P J 2019 Proc. Natl. Acad. Sci. U. S. A. 116 4018Google Scholar
[8] Ozcelik A, Rufo J, Guo F, Gu Y Y, Li P, Lata J, Huang T J 2018 Nat. Methods 15 1021Google Scholar
[9] Wixforth A 2003 Superlattice Microst. 33 389Google Scholar
[10] Strobl C J, Von G Z, Wixforth A 2004 IEEE T. Ultrason. Ferr. 51 1432Google Scholar
[11] Alzuaga S, Manceau J F, Bastien F 2005 J. Sound Vib. 282 151Google Scholar
[12] Wixforth A 2005 Methods Mol. Med. 114 121
[13] Alvarez M, Friend J R, Yeo L Y 2008 Langmuir 24 10629Google Scholar
[14] Shi J, Ahmed D, Mao X, Lin S C S, Lawit A, Huang T J 2009 Lab. Chip. 9 2890Google Scholar
[15] Li P Q, Zhou W, Peng B X, Zhang C Q, Zhu X F, Meng L, Wu J R, Zheng H R 2023 Phys. Rev. A 20 064003Google Scholar
[16] Huang Y Q, Das P K, Bhethanabotla V R 2021 Sens. Actuators Rep. 3 100041Google Scholar
[17] Wu J R 1991 J. Acoust. Soc. Am. 89 2140Google Scholar
[18] Lee J, Teh S Y, Lee A, Kim H H, Lee C, Shung K K 2009 Appl. Phys. Lett. 95 73701Google Scholar
[19] Marzo A, Seah S A, Drinkwater B W, Sahoo D R, Long B, Subramanian S 2015 Nat. Commum. 6 8661Google Scholar
[20] Melde K, Mark A G, Qiu T, Fischer P 2016 Nature 537 518Google Scholar
[21] Memoli G, Caleap M, Asakawa M, Sahoo D R, Drinkwater B W, Subramanian S 2017 Nat. Commun. 8 14608Google Scholar
[22] Li F, Cai F Y, Zhang L K, Liu Z Y, Li F, Meng L, Wu J R, Li J Y, Zhang X F, Zheng H R 2020 Phys. Rev. A 13 044077Google Scholar
[23] Li F, Cai F Y, Liu Z Y, Meng L, Qian M, Wang C, Cheng Q, Qian M L, Liu X, Wu J R, Li J Y, Zheng H R 2014 Phys. Rev. A 1 051001Google Scholar
[24] COMSOL, Sweden S https://cn.comsol.com/ [2023-11-21]
[25] He Z J, Jia H, Qiu C Y, Peng S S, Mei X F, Cai F Y, Peng P, Ke M Z, Liu Z Y 2010 Phys. Rev. Lett. 105 074301Google Scholar
[26] Gor’kov L P 1962 Sov. Phys. Dokl. 6 773Google Scholar
[27] Bruus H 2012 Lab Chip 12 1014Google Scholar
-
7-20231886 实验视频.mp4
Catalog
Metrics
- Abstract views: 2206
- PDF Downloads: 84
- Cited By: 0