-
As one of the nonlinear effects of acoustic waves, the time-averaged acoustic radiation torque expression is derived from the transfer of angular momentum from the incident beam to the object. In recent years, the acoustic radiation torque has received substantial attention since it is the underlying principle of well-controlled particle rotations and spins, which provides a new degree of freedom in particle manipulation and acousto-fluidic applications in addition to the translational displacement caused by the acoustic radiation force. Cylindrical particles, such as fibers, carbon nanotubes and other surface acoustic wave devices, are commonly encountered in various applications. The acoustic scattering coefficients for an elliptical cylinder arbitrarily located at the field of Gauss beam in two-dimensions are computed based on the partial-wave series expansion method and the Graf’s additional theorem for cylindrical functions to obtain the off-axis beam shape coefficients. It is worth mentioning that both the rigid and non-rigid cylinders are considered in this work, which requires different boundary conditions at the cylinder surface. Moreover, the closed-form expression of the acoustic radiation torque in this case is derived. On this basis, several numerical simulations are performed with particular emphasis on the off-axis distance, the incident angle and the beam waist. The simulated results show that both the positive and negative acoustic radiation torque can exist under certain conditions, which means that 1) the elliptical cylinder can be rotated in either the clockwise or the counterclockwise direction, 2) rigid elliptical cylinders are more likely to experience a strong acoustic radiation torque than non-rigid elliptical cylinders at low frequencies, 3) the incident wave field with a specific frequency can excite a different resonance scattering mode for a non-rigid elliptical cylinder, therefore the acoustic radiation torque peak is more related to the beam frequency than to the elliptical cylinder’s location in the field, and 4) increasing the beam width can enlarge the scattering cross section area, and thus enhancing the acoustic radiation torque on the elliptical cylinder. The results in this study are expected to provide a theoretical guide for the controllable rotation of a particle and the viscosity inversion of fluid by using the acoustic radiation torque. The exact formalism presented here by using the multipole expansion method, which is valid for any frequency range, can be used to validate other approaches by using purely numerical methods.
-
Keywords:
- acoustic radiation torque /
- Gauss beam /
- elliptical cylinder /
- partial-wave series expansion method /
- acoustic manipulation
[1] Wu J R 1991 J. Acoust. Soc. Am. 89 2140Google Scholar
[2] 黄先玉, 蔡飞燕, 李文成, 郑海荣, 何兆剑, 邓科, 赵鹤平 2017 物理学报 66 044301Google Scholar
Huang X Y, Cai F Y, Li W C, Zheng H R, He Z J, Deng K, Zhao H P 2017 Acta Phys. Sin. 66 044301Google Scholar
[3] Ozcelik A, Rufo J, Guo F, Gu Y Y, Li P, Lata J 2018 Nat. Methods 15 1021Google Scholar
[4] Baudoin M, Thomas J L 2020 Annu. Rev. Fluid Mech. 52 205Google Scholar
[5] Lierke E G 1996 Acustica 82 220
[6] Yarin A L, Pfaffenlehner M, Tropea C 1998 J. Fluid Mech. 356 65Google Scholar
[7] Chung S K, Trinh E H 1998 J. Cryst. Growth 194 384Google Scholar
[8] Mitri F G, Garzon F H, Sinha D N 2011 Rev. Sci. Instrum. 82 034903Google Scholar
[9] Maidanik G 1958 J. Acoust. Soc. Am. 30 620Google Scholar
[10] Fan Z W, Mei D Q, Yang K J, Chen Z C 2008 J. Acoust. Soc. Am. 124 2727Google Scholar
[11] Zhang L K, Marston P L 2011 J. Acoust. Soc. Am. 129 1679Google Scholar
[12] Zhang L K, Marston P L 2011 Phys. Rev. E 84 065601Google Scholar
[13] Silva G T, Lobo T P, Mitri F G 2012 EPL 97 54003Google Scholar
[14] Mitri F G 2012 Phys. Rev. E 85 026602Google Scholar
[15] Mitri F G, Lobo T P, Silva G T 2012 Phys. Rev. E 86 059902Google Scholar
[16] Zhang L K 2018 Phys. Rev. Appl. 10 034039Google Scholar
[17] Gong Z X, Marston P L 2019 Phys. Rev. Appl. 11 064022Google Scholar
[18] Zeng Q, Li L L, Ma H L, Xu J H, Fan Y S, Wang H 2013 Appl. Phys. Lett. 102 213106Google Scholar
[19] Yamahira S, Hatanaka S, Kuwabara M 2000 Jpn. J. Appl. Phys. 39 3683Google Scholar
[20] Shilton R, Tan M K, Yeo L Y, Friend J R 2008 J. Appl. Phys. 104 014910Google Scholar
[21] Hasheminejad S M, Sanaei R 2007 J. Comput. Acoust. 15 377Google Scholar
[22] Wang J T, Dual J 2011 J. Acoust. Soc. Am. 129 3490Google Scholar
[23] Mitri F G 2016 Phys. Fluids 28 077104Google Scholar
[24] Mitri F G 2016 Wave Motion 66 31Google Scholar
[25] Mitri F G 2017 J. Appl. Phys. 121 144901Google Scholar
[26] Wang H B, Gao S, Qiao Y P, Liu J H, Liu X Z 2019 Phys. Fluids 31 047103Google Scholar
[27] Mitri F G 2018 Appl. Phys. 124 054902Google Scholar
[28] Mitri F G, Fellah Z E A, Silva G T 2014 J. Sound Vib. 333 7326Google Scholar
[29] Qiao Y P, Zhang X F, Zhang G B 2017 J. Acoust. Soc. Am. 141 4633Google Scholar
[30] Flax L, Dragonette L R, Uberall H 1978 J. Acoust. Soc. Am. 63 723Google Scholar
[31] Werby M F, Uberall H, Nagl A, Brown S H, Dickey J W 1988 J. Acoust. Soc. Am. 84 1425Google Scholar
[32] Wiegel F W 1979 Phys. Lett. A 70 112Google Scholar
-
图 2 椭圆柱的声辐射力矩函数随kb和ky0的变化关系(kx0 = 0, kW0 = 3) (a) a/b = 1/2, 刚性; (b) a/b = 1/2, PDMS-TBE; (c) a/b = 2/3, 刚性; (d) a/b = 2/3, PDMS-TBE; (e) a/b = 1, 刚性; (f) a/b = 1, PDMS-TBE; (g) a/b = 3/2, 刚性; (h) a/b = 3/2, PDMS-TBE; (i) a/b = 2, 刚性; (j) a/b = 2, PDMS-TBE
Figure 2. The acoustic radiation torque function plots for an elliptical cylinder versus kb and ky0 (kx0 = 0, kW0 = 3): (a) a/b = 1/2, rigid; (b) a/b = 1/2, PDMS-TBE; (c) a/b = 2/3, rigid; (d) a/b = 2/3, PDMS-TBE; (e) a/b = 1, rigid; (f) a/b = 1, PDMS-TBE; (g) a/b = 3/2, rigid; (h) a/b = 3/2, PDMS-TBE; (i) a/b = 2, rigid; (j) a/b = 2, PDMS-TBE.
图 3 PDMS椭圆柱的共振散射函数幅值
$\left| {{f^{{\rm{res}}}}} \right|$ 随角度θ的变化关系$(kx_0 \!=\! 0, ky_0 \!=\! 6, \alpha \!=\! \pi/4, kW_0 \!=\! 3) ~~{\rm(a)}~ kb \!=\! 5.5; ~{\rm (b)}~ kb \!=\! 6.1$ Figure 3. The resonance scattering function modulus
$\left| {{f^{{\rm{res}}}}} \right|$ for a PDMS-TBE elliptical cylinder versus the angle θ (kx0 = 0, ky0 = 6, α = π/4, kW0 = 3): (a) kb = 5.5; (b) kb = 6.1.图 4 椭圆柱的声辐射力矩函数随kb和kx0的变化关系(ky0 = –3, kW0 = 3) (a) a/b = 1/2, 刚性; (b) a/b = 1/2, PDMS-TBE; (c) a/b = 2/3, 刚性; (d) a/b = 2/3, PDMS-TBE; (e) a/b = 1, 刚性; (f) a/b = 1, PDMS-TBE; (g) a/b = 3/2, 刚性; (h) a/b = 3/2, PDMS-TBE; (i) a/b = 2, 刚性; (j) a/b = 2, PDMS-TBE
Figure 4. The acoustic radiation torque function plots for an elliptical cylinder versus kb and kx0 (ky0 = –3, kW0 = 3): (a) a/b = 1/2, rigid; (b) a/b = 1/2, PDMS-TBE; (c) a/b = 2/3, rigid; (d) a/b = 2/3, PDMS-TBE; (e) a/b = 1, rigid; (f) a/b = 1, PDMS-TBE; (g) a/b = 3/2, rigid; (h) a/b = 3/2, PDMS-TBE; (i) a/b = 2, rigid; (j) a/b = 2, PDMS-TBE.
图 5 椭圆柱的声辐射力矩函数随kb和α的变化关系(kx0 = –3, ky0 = –3, kW0 = 3) (a) a/b = 1/2, 刚性; (b) a/b = 1/2, PDMS-TBE; (c) a/b = 2/3, 刚性; (d) a/b = 2/3, PDMS-TBE; (e) a/b = 1, 刚性; (f) a/b = 1, PDMS-TBE; (g) a/b = 3/2, 刚性; (h) a/b = 3/2, PDMS-TBE; (i) a/b = 2, 刚性; (j) a/b = 2, PDMS-TBE
Figure 5. The acoustic radiation torque function plots for an elliptical cylinder versus kb and α (kx0 = –3, ky0 = –3, kW0 = 3): (a) a/b = 1/2, rigid; (b) a/b = 1/2, PDMS-TBE; (c) a/b = 2/3, rigid; (d) a/b = 2/3, PDMS-TBE; (e) a/b = 1, rigid; (f) a/b = 1, PDMS-TBE; (g) a/b = 3/2, rigid; (h) a/b = 3/2, PDMS-TBE; (i) a/b = 2, rigid; (j) a/b = 2, PDMS-TBE.
图 6 椭圆柱的声辐射力矩函数随kb和kW0的变化关系(kx0 = –3, ky0 = –3, α = π/4) (a) a/b = 1/2, 刚性; (b) a/b = 1/2, PDMS-TBE; (c) a/b = 2/3, 刚性; (d) a/b = 2/3, PDMS-TBE; (e) a/b = 1, 刚性; (f) a/b = 1, PDMS-TBE; (g) a/b = 3/2, 刚性; (h) a/b = 3/2, PDMS-TBE; (i) a/b = 2, 刚性; (j) a/b = 2, PDMS-TBE
Figure 6. The acoustic radiation torque function plots for an elliptical cylinder versus kb and kW0 (kx0 = –3, ky0 = –3, α = π/4): (a) a/b = 1/2, rigid; (b) a/b = 1/2, PDMS-TBE; (c) a/b = 2/3, rigid; (d) a/b = 2/3, PDMS-TBE; (e) a/b = 1, rigid; (f) a/b = 1, PDMS-TBE; (g) a/b = 3/2, rigid; (h) a/b = 3/2, PDMS-TBE; (i) a/b = 2, rigid; (j) a/b = 2, PDMS-TBE.
-
[1] Wu J R 1991 J. Acoust. Soc. Am. 89 2140Google Scholar
[2] 黄先玉, 蔡飞燕, 李文成, 郑海荣, 何兆剑, 邓科, 赵鹤平 2017 物理学报 66 044301Google Scholar
Huang X Y, Cai F Y, Li W C, Zheng H R, He Z J, Deng K, Zhao H P 2017 Acta Phys. Sin. 66 044301Google Scholar
[3] Ozcelik A, Rufo J, Guo F, Gu Y Y, Li P, Lata J 2018 Nat. Methods 15 1021Google Scholar
[4] Baudoin M, Thomas J L 2020 Annu. Rev. Fluid Mech. 52 205Google Scholar
[5] Lierke E G 1996 Acustica 82 220
[6] Yarin A L, Pfaffenlehner M, Tropea C 1998 J. Fluid Mech. 356 65Google Scholar
[7] Chung S K, Trinh E H 1998 J. Cryst. Growth 194 384Google Scholar
[8] Mitri F G, Garzon F H, Sinha D N 2011 Rev. Sci. Instrum. 82 034903Google Scholar
[9] Maidanik G 1958 J. Acoust. Soc. Am. 30 620Google Scholar
[10] Fan Z W, Mei D Q, Yang K J, Chen Z C 2008 J. Acoust. Soc. Am. 124 2727Google Scholar
[11] Zhang L K, Marston P L 2011 J. Acoust. Soc. Am. 129 1679Google Scholar
[12] Zhang L K, Marston P L 2011 Phys. Rev. E 84 065601Google Scholar
[13] Silva G T, Lobo T P, Mitri F G 2012 EPL 97 54003Google Scholar
[14] Mitri F G 2012 Phys. Rev. E 85 026602Google Scholar
[15] Mitri F G, Lobo T P, Silva G T 2012 Phys. Rev. E 86 059902Google Scholar
[16] Zhang L K 2018 Phys. Rev. Appl. 10 034039Google Scholar
[17] Gong Z X, Marston P L 2019 Phys. Rev. Appl. 11 064022Google Scholar
[18] Zeng Q, Li L L, Ma H L, Xu J H, Fan Y S, Wang H 2013 Appl. Phys. Lett. 102 213106Google Scholar
[19] Yamahira S, Hatanaka S, Kuwabara M 2000 Jpn. J. Appl. Phys. 39 3683Google Scholar
[20] Shilton R, Tan M K, Yeo L Y, Friend J R 2008 J. Appl. Phys. 104 014910Google Scholar
[21] Hasheminejad S M, Sanaei R 2007 J. Comput. Acoust. 15 377Google Scholar
[22] Wang J T, Dual J 2011 J. Acoust. Soc. Am. 129 3490Google Scholar
[23] Mitri F G 2016 Phys. Fluids 28 077104Google Scholar
[24] Mitri F G 2016 Wave Motion 66 31Google Scholar
[25] Mitri F G 2017 J. Appl. Phys. 121 144901Google Scholar
[26] Wang H B, Gao S, Qiao Y P, Liu J H, Liu X Z 2019 Phys. Fluids 31 047103Google Scholar
[27] Mitri F G 2018 Appl. Phys. 124 054902Google Scholar
[28] Mitri F G, Fellah Z E A, Silva G T 2014 J. Sound Vib. 333 7326Google Scholar
[29] Qiao Y P, Zhang X F, Zhang G B 2017 J. Acoust. Soc. Am. 141 4633Google Scholar
[30] Flax L, Dragonette L R, Uberall H 1978 J. Acoust. Soc. Am. 63 723Google Scholar
[31] Werby M F, Uberall H, Nagl A, Brown S H, Dickey J W 1988 J. Acoust. Soc. Am. 84 1425Google Scholar
[32] Wiegel F W 1979 Phys. Lett. A 70 112Google Scholar
Catalog
Metrics
- Abstract views: 5251
- PDF Downloads: 58
- Cited By: 0