-
Rayleigh waves propagating in an elastic surface are commonly used for the near surface flaw detection and material characterization. However, unlike the bulk wave case, there are seldom three-dimensional models to be provided for the Rayleigh waves. In the past decade, multi-Gaussian beam models have been gradually developed and perfectly applied to solve many complicated propagation problems of bulk waves. However, up to date they have not been extended to the simulation of the Rayleigh waves. By combining the Rayleigh wave Green function and the multi-Gaussian beam model, a three-dimensional Rayleigh wave model is presented to calculate the beam fields radiated from a rectangular transducer mounted on the Lucite wedge. Furthermore, some simulation results of the provided method are compared to those of a more exacted point source model. It is shown that the multi-Gaussian surface wave model has good capability in both computational accuracy and efficiency.
-
Keywords:
- ultrasonic Rayleigh wave /
- multi-Gaussian beam /
- acoustic field calculation /
- point source model
[1] Fan Y, Dixon S, Edwards R S, Jian X 2007 NDT&E International 40 471
[2] Yuan L, Sun K H, Cui Y P, Shen Z H, Ni X W 2012 Acta Phys. Sin. 61 014210 (in Chinese) [袁玲, 孙凯华, 崔一平, 沈中华, 倪晓武 2012 物理学报 61 014210]
[3] Rose J L 1999 Ultrasonic Waves in Solid Media Cambridge University Press
[4] Schmerr L W, Sedov L 2011 AIP Conf. Proc. 1335 771
[5] Wen J J, Breazeale M A 1988 J. Acoust. Soc. Amer. 83 1752
[6] Zhao X Y, Gang T, Zhang B X 2008 Acta Phys. Sin. 57 5049 (in Chinese) [赵新玉, 刚铁, 张碧星 2008 物理学报 57 5049]
[7] Spies M 2000 NDT&E International 33 155
[8] Huang R J, Schmerr L W, Sedov A 2007 Res. Nondestr. Eval. 18 193
[9] Yu J, Zhang D, Liu X Z, Gong X F, Song F X 2007 Acta Phys. Sin. 56 5909 (in Chinese) [于洁, 章东, 刘晓宙, 龚秀芬, 宋富先 2007 物理学报 56 5909]
[10] Zhao X Y, Gang T 2009 Ultrasonics 49 126
[11] Aki K, Richards P G 1980 Quantitative Seismology-Theory and Methods (University Science Books)
[12] Schmerr L W 1998 Fundamentals of Ultrasonic Nondestructive Evaluation-A Modeling Approach, Plenum New York
[13] Schmerr L W, Song S J 2007 Ultrasonic Nondestructive Evaluation Systems-Models and Measurements (Springer)
[14] Ding D, Zhang Y, Liu J 2003 J. Acoust. Soc. Am. 113 3043
-
[1] Fan Y, Dixon S, Edwards R S, Jian X 2007 NDT&E International 40 471
[2] Yuan L, Sun K H, Cui Y P, Shen Z H, Ni X W 2012 Acta Phys. Sin. 61 014210 (in Chinese) [袁玲, 孙凯华, 崔一平, 沈中华, 倪晓武 2012 物理学报 61 014210]
[3] Rose J L 1999 Ultrasonic Waves in Solid Media Cambridge University Press
[4] Schmerr L W, Sedov L 2011 AIP Conf. Proc. 1335 771
[5] Wen J J, Breazeale M A 1988 J. Acoust. Soc. Amer. 83 1752
[6] Zhao X Y, Gang T, Zhang B X 2008 Acta Phys. Sin. 57 5049 (in Chinese) [赵新玉, 刚铁, 张碧星 2008 物理学报 57 5049]
[7] Spies M 2000 NDT&E International 33 155
[8] Huang R J, Schmerr L W, Sedov A 2007 Res. Nondestr. Eval. 18 193
[9] Yu J, Zhang D, Liu X Z, Gong X F, Song F X 2007 Acta Phys. Sin. 56 5909 (in Chinese) [于洁, 章东, 刘晓宙, 龚秀芬, 宋富先 2007 物理学报 56 5909]
[10] Zhao X Y, Gang T 2009 Ultrasonics 49 126
[11] Aki K, Richards P G 1980 Quantitative Seismology-Theory and Methods (University Science Books)
[12] Schmerr L W 1998 Fundamentals of Ultrasonic Nondestructive Evaluation-A Modeling Approach, Plenum New York
[13] Schmerr L W, Song S J 2007 Ultrasonic Nondestructive Evaluation Systems-Models and Measurements (Springer)
[14] Ding D, Zhang Y, Liu J 2003 J. Acoust. Soc. Am. 113 3043
Catalog
Metrics
- Abstract views: 6550
- PDF Downloads: 760
- Cited By: 0