-
Based on the application of acoustic waves in cell manipulation, a model consisting of an elastic spherical shell and eccentric droplet is established to simulate a eukaryotic cell and analyze the acoustic radiation force (ARF) on the cell. In this work, we derive an exact expression for the ARF on the liquid-filled spherical shell. The influence of eccentric distance, radius of the eccentric droplet and impedance of the medium inside the liquid-filled spherical shell on the ARF are analyzed numerically. The results show that the ARF is very sensitive to the position and size of the eccentric droplet. As the eccentricity of the eccentric droplet increases, the ARF becomes greater. In a low frequency region (ka<3) the resonance peak point increases, and the position of the curve ventral point shifts to the high frequency region (ka>3) with the increase of the radius of the eccentric droplet. The effect of the position variation on the ARF is more significant than that of the radius change, and both of their effects will be superimposed on each other. The ARF, as a function of ka, is mainly affected by the variation of the nucleus characteristic impedance. The ARF amplitude around ka = 5 increases and the position of the ventral point tends to shift rightwards with the enlargement of the nucleus impedance. Therefore, the radiation response at a certain frequency or in a cell size range can be enhanced when the nucleus impedance increases. The results of this study provide theoretical basis for the cell sorting and targeted therapy.
[1] Alan B, Utangaç M, Göya C, Dağgülli M 2016 Med. Sci. Monit 22 4523Google Scholar
[2] Carugo D, Ankrett D N, Glynne-Jones P, Capretto L, Boltryk R J, Zhang X L, Townsend P A, Hill M 2011 Biomicrofluidics 5 044108Google Scholar
[3] Rapoport N, Kennedy A M, Shea J E, Scaife C L, Nam K H 2009 Mol. Pharmaceutics 7 22
[4] Meng L, Cai F Y, Li F, Zhou W, Niu L L, Zheng H R 2019 J. Phys. D Appl. Phys. 52 1
[5] Wu J R, Pepe J, Rincón M 2006 Ultrasonics 44 e21Google Scholar
[6] Wang W B, Chen Y S, Farooq U, Xuan W P, Jin H, Dong S R, Luo J K 2017 Appl. Phys. Lett. 110 143504Google Scholar
[7] Mishra P, Hill M, Glynne-Jones P 2014 Biomicrofluidics 8 034109Google Scholar
[8] Silva G T, Tian L F, Franklin A, Wang X J, Han X J, Mann S, Drinkwater B W 2019 Phy. Rev. E 99 063002Google Scholar
[9] Zhang R Q, Guo H L, Deng W Y, Huang X Q, Li F, Lu J Y, Liu Z Y 2020 Appl. Phys. Lett. 116 123503Google Scholar
[10] Settnes M, Bruus H 2012 Phys. Rev. E 85 016327Google Scholar
[11] Barmatz M, Collas P 1985 J. Acoust. Soc. Am. 77 928Google Scholar
[12] Silva G T 2014 J. Acoust. Soc. Am. 136 2405Google Scholar
[13] Léon F, Lecroq F, Décultot D, Mazé G 1992 J. Acoust. Soc. Am. 91 1388Google Scholar
[14] Sharma G S, Marsick A, Maxit L, Skvortsov A, MacGillivray I, Kessissoglou N 2021 J. Acoust. Soc. Am. 150 4308Google Scholar
[15] King L V 1934 Proc. Roy. Soc. A 137 212
[16] Rajabi M, Mojahed A 2016 J. Sound Vib. 383 265Google Scholar
[17] Flax L, Dragonette L R, Überall H 1978 J. Acoust. Soc. Am. 63 723Google Scholar
[18] Sapozhnikov O A, Bailey M R 2013 J. Acoust. Soc. Am. 133 661Google Scholar
[19] Baasch T, Dual J 2020 Phys. Rev. Appl. 14 024052Google Scholar
[20] Hasegawa T, Hino Y, Annou A, Noda H, Kato M, Naoki Inoue 1992 J. Acoust. Soc. Am. 93 154
[21] Junger M C 1952 J. Acoust. Soc. Am. 24 366Google Scholar
[22] Mitri F G 2005 Ultrasonics 43 681Google Scholar
[23] Wang H B, Liu X Z, Gao S, Cui J, Liu J H, He A J, Zhang G T 2018 Chin. Phys. B 27 034302Google Scholar
[24] Wang Y Y, Yao J, Wu X W, Wu D J, Liu X J 2017 J. Appl. Phys. 122 094902Google Scholar
[25] Thompson W 1973 J. Acoust. Soc. Am. 54 1694Google Scholar
[26] Roumeliotis J A, Kanellopoulos J D, Fikioris J G 1991 J. Acoust. Soc. Am. 90 1144Google Scholar
[27] Hasheminejad S M, Azarpeyvand M 2004 Mech. Res. Commun. 31 493Google Scholar
[28] 臧雨宸, 林伟军, 苏畅, 吴鹏飞, 常钦 2022 声学学报 47 379
Zang Y C, Lin W J, Su C, Wu P F, Chang Q 2022 Acta Acustica 47 379
[29] Ivanov Y A 1970 NASA Tech. Transl. F-597
[30] Mo R Y, Hu J, Chen S, Wang C H 2020 Chin. Phys. B 29 094301Google Scholar
[31] Hunt J W, Worthington A E, Xuan A, Kolios M C, Czarnota G J, Sherar M D 2002 Ultrasound in Medicine and Biology 28 217Google Scholar
[32] 肖娜, 高雨彤, 肖述兵, 陈从文 2021 临床与实验病理学杂志 37 1496
Xiao N, Gao Y T, Xiao S B, Chen C W 2021 J. Clin. Exp. Psychopathol. 37 1496
[33] Jo M C, Guldiken R 2012 Sens. Actuators, A 187 22Google Scholar
-
表 B1 液体介质参数值
Table B1. Some parameter of liquid medium.
细胞质 细胞核 水 水银 甘油 声速/(m·s–1) 1508.0 1508. 5 1500.0 1407.0 1923.0 密度/(kg·m–3) 1000 1430 1000 13600 1260 阻抗/MRayl 1.51 2.16 1.50 19.1 2.42 表 B2 弹性球壳参数值
Table B2. Some parameters of elastic shell.
球壳材料 密度ρ/(kg·m–3) 杨氏模量E/GPa 泊松比ν 聚糖 600 0.2 0. 4 不锈钢 7900 200.0 0. 264 -
[1] Alan B, Utangaç M, Göya C, Dağgülli M 2016 Med. Sci. Monit 22 4523Google Scholar
[2] Carugo D, Ankrett D N, Glynne-Jones P, Capretto L, Boltryk R J, Zhang X L, Townsend P A, Hill M 2011 Biomicrofluidics 5 044108Google Scholar
[3] Rapoport N, Kennedy A M, Shea J E, Scaife C L, Nam K H 2009 Mol. Pharmaceutics 7 22
[4] Meng L, Cai F Y, Li F, Zhou W, Niu L L, Zheng H R 2019 J. Phys. D Appl. Phys. 52 1
[5] Wu J R, Pepe J, Rincón M 2006 Ultrasonics 44 e21Google Scholar
[6] Wang W B, Chen Y S, Farooq U, Xuan W P, Jin H, Dong S R, Luo J K 2017 Appl. Phys. Lett. 110 143504Google Scholar
[7] Mishra P, Hill M, Glynne-Jones P 2014 Biomicrofluidics 8 034109Google Scholar
[8] Silva G T, Tian L F, Franklin A, Wang X J, Han X J, Mann S, Drinkwater B W 2019 Phy. Rev. E 99 063002Google Scholar
[9] Zhang R Q, Guo H L, Deng W Y, Huang X Q, Li F, Lu J Y, Liu Z Y 2020 Appl. Phys. Lett. 116 123503Google Scholar
[10] Settnes M, Bruus H 2012 Phys. Rev. E 85 016327Google Scholar
[11] Barmatz M, Collas P 1985 J. Acoust. Soc. Am. 77 928Google Scholar
[12] Silva G T 2014 J. Acoust. Soc. Am. 136 2405Google Scholar
[13] Léon F, Lecroq F, Décultot D, Mazé G 1992 J. Acoust. Soc. Am. 91 1388Google Scholar
[14] Sharma G S, Marsick A, Maxit L, Skvortsov A, MacGillivray I, Kessissoglou N 2021 J. Acoust. Soc. Am. 150 4308Google Scholar
[15] King L V 1934 Proc. Roy. Soc. A 137 212
[16] Rajabi M, Mojahed A 2016 J. Sound Vib. 383 265Google Scholar
[17] Flax L, Dragonette L R, Überall H 1978 J. Acoust. Soc. Am. 63 723Google Scholar
[18] Sapozhnikov O A, Bailey M R 2013 J. Acoust. Soc. Am. 133 661Google Scholar
[19] Baasch T, Dual J 2020 Phys. Rev. Appl. 14 024052Google Scholar
[20] Hasegawa T, Hino Y, Annou A, Noda H, Kato M, Naoki Inoue 1992 J. Acoust. Soc. Am. 93 154
[21] Junger M C 1952 J. Acoust. Soc. Am. 24 366Google Scholar
[22] Mitri F G 2005 Ultrasonics 43 681Google Scholar
[23] Wang H B, Liu X Z, Gao S, Cui J, Liu J H, He A J, Zhang G T 2018 Chin. Phys. B 27 034302Google Scholar
[24] Wang Y Y, Yao J, Wu X W, Wu D J, Liu X J 2017 J. Appl. Phys. 122 094902Google Scholar
[25] Thompson W 1973 J. Acoust. Soc. Am. 54 1694Google Scholar
[26] Roumeliotis J A, Kanellopoulos J D, Fikioris J G 1991 J. Acoust. Soc. Am. 90 1144Google Scholar
[27] Hasheminejad S M, Azarpeyvand M 2004 Mech. Res. Commun. 31 493Google Scholar
[28] 臧雨宸, 林伟军, 苏畅, 吴鹏飞, 常钦 2022 声学学报 47 379
Zang Y C, Lin W J, Su C, Wu P F, Chang Q 2022 Acta Acustica 47 379
[29] Ivanov Y A 1970 NASA Tech. Transl. F-597
[30] Mo R Y, Hu J, Chen S, Wang C H 2020 Chin. Phys. B 29 094301Google Scholar
[31] Hunt J W, Worthington A E, Xuan A, Kolios M C, Czarnota G J, Sherar M D 2002 Ultrasound in Medicine and Biology 28 217Google Scholar
[32] 肖娜, 高雨彤, 肖述兵, 陈从文 2021 临床与实验病理学杂志 37 1496
Xiao N, Gao Y T, Xiao S B, Chen C W 2021 J. Clin. Exp. Psychopathol. 37 1496
[33] Jo M C, Guldiken R 2012 Sens. Actuators, A 187 22Google Scholar
Catalog
Metrics
- Abstract views: 3409
- PDF Downloads: 62
- Cited By: 0