Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Precision spectroscopy of dielectronic recombination experiments for highly charged ions at large facility HIAF: a simulation study

Huang Hou-Ke Wen Wei-Qiang Huang Zhong-Kui Wang Shu-Xing Tang Mei-Tang Li Jie Mao Li-Jun Yuan Yang Wan Meng-Yu Liu Chang Wang Han-Bin Zhou Xiao-Peng Zhao Dong-Mei Yan Kai-Min Zhou Yun-Bin Yuan You-Jin Yang Jian-Cheng Zhang Shao-Feng Zhu Lin-Fan Ma Xin-Wen

Citation:

Precision spectroscopy of dielectronic recombination experiments for highly charged ions at large facility HIAF: a simulation study

Huang Hou-Ke, Wen Wei-Qiang, Huang Zhong-Kui, Wang Shu-Xing, Tang Mei-Tang, Li Jie, Mao Li-Jun, Yuan Yang, Wan Meng-Yu, Liu Chang, Wang Han-Bin, Zhou Xiao-Peng, Zhao Dong-Mei, Yan Kai-Min, Zhou Yun-Bin, Yuan You-Jin, Yang Jian-Cheng, Zhang Shao-Feng, Zhu Lin-Fan, Ma Xin-Wen
PDF
Get Citation
  • Dielectronic recombination (DR) experiments of highly charged ions not only provide essential atomic benchmark data for astrophysical and fusion plasma research but also serve as a stringent test for strong-field quantum electrodynamics (QED) effects, relativistic effects, and electron correlation effects. High-Intensity Heavy-Ion Accelerator Facility (HIAF), currently under construction at Huizhou, China, has a high-precision spectrometer ring (SRing) equipped with a 450 kV electron-cooler and an 80 kV ultracold electron-target. This advanced setup facilitates precise measurements of the DR process for highly charged ions across a broad range of center-of-mass energies, from meV to tens of keV. In this study, we employ molecular dynamics methods to simulate the electron beam temperature distribution of the ultracold electron-target at the SRing. The simulation results indicate that, following the designed adiabatic magnetic field and acceleration field treatment, the transverse and longitudinal electron beam temperature from the thermionic electron gun can be reduced from 100 meV to below 5 meV and 0.1 meV, respectively. Furthermore, we analyze the impact of this ultracold electron beam temperature on the resonance peaks and energy resolution in DR experiments. The resolution gain at the SRing electron-target is particularly pronounced at small electron-ion collision energies, which provides unique experimental conditions for the DR experiments. Using lithium-like ${ }_{54}^{129} \mathrm{Xe}^{51+}$ and ${ }_{92}^{238} U^{89+}$ ions as examples, we simulate the DR resonance spectrum at the SRing and compare them with the simulated results from the experimental cooler storage ring CSRe. The results reveal that the SRing experiments can resolve fine DR resonance structures with ultra-high energy resolution compared to those from the CSRe. This work lays the foundation for precise DR spectroscopy of highly charged ions at the SRing to stringent test of the strong-field QED effects and extract nuclear structure information.
  • [1]

    Savin D W, Bartsch T, Chen M H, Kahn S M, Liedahl D A, Linkemann J, Müller A, Schippers S, Schmitt M, Schwalm D, Wolf A 1997 Astrophys. J. 489 L115

    [2]

    Savin D W, Behar E, Kahn S M, Gwinner G, Saghiri A A, Schmitt M, Grieser M, Repnow R, Schwalm D, Wolf A, Bartsch T, Muller A, Schippers S, Badnell N R, Chen M H, Gorczyca T W 2002 Astrophys. J. 138 337

    [3]

    Savin D W, Gwinner G, Grieser M, Repnow R, Schnell M, Schwalm D, Wolf A, Zhou S G, Kieslich S, Muller A, Schippers S, Colgan J, Loch S D, Badnell N R, Chen M H, Gu M F 2006 Astrophys. J. 642 1275

    [4]

    Savin D W, Kahn S M, Gwinner G, Grieser M, Repnow R, Saathoff G, Schwalm D, Wolf A, Muller A, Schippers S, Zavodszky P A, Chen M H, Gorczyca T W, Zatsarinny O, Gu M F 2003 Astrophys. J. Suppl. Ser. 147 421

    [5]

    Savin D W, Kahn S M, Linkemann J, Saghiri A A, Schmitt M, Grieser M, Repnow R, Schwalm D, Wolf A, Bartsch T, Brandau C, Hoffknecht A, Muller A, Schippers S, Chen M H, Badnell N R 1999 Astrophys. J. Suppl. Ser. 123 687

    [6]

    Savin D W, Kahn S M, Linkemann J, Saghiri A A, Schmitt M, Grieser M, Repnow R, Schwalm D, Wolf A, Bartsch T, Muller A, Schippers S, Chen M H, Badnell N R, Gorczyca T W, Zatsarinny O 2002 Astrophys. J. 576 1098

    [7]

    Schmidt E W, Schippers S, Müller A, Lestinsky M, Sprenger F, Grieser M, Repnow R, Wolf A, Brandau C, Lukić D, Schnell M, Savin D W 2006 Astrophys. J. 641 L157

    [8]

    Larsson M 1995 Rep. Prog. Phys. 58 1267

    [9]

    Phaneuf R A, Havener C C, Dunn G H, Müller A 1999 Rep. Prog. Phys. 62 1143

    [10]

    Lindroth E, Danared H, Glans P, Pešić Z, Tokman M, Vikor G, Schuch R 2001 Phys. Rev. Lett. 86 5027

    [11]

    Brandau C, Kozhuharov C, Müller A, Shi W, Schippers S, Bartsch T, Böhm S, Böhme C, Hoffknecht A, Knopp H, Grün N, Scheid W, Steih T, Bosch F, Franzke B, Mokler P H, Nolden F, Steck M, Stöhlker T, Stachura Z 2003 Phys. Rev. Lett. 91 073202

    [12]

    Lestinsky M, Lindroth E, Orlov D, Schmidt E, Schippers S, Böhm S, Brandau C, Sprenger F, Terekhov A, Müller A 2008 Phys. Rev. Lett. 100 033001

    [13]

    Brandau C, Kozhuharov C, Harman Z, Müller A, Schippers S, Kozhedub Y, Bernhardt D, Böhm S, Jacobi J, Schmidt E W 2008 Phys. Rev. Lett. 100 073201

    [14]

    Bates D R, Massey H S W 1943 Philos. Trans. Royal Soc. A 239 269

    [15]

    Badnell N R, Pindzola M S, Andersen L H, Bolko J, Schmidt H T 1991 J. Phys. B: At. Mol. Opt. Phys. 24 4441

    [16]

    LaGattuta K, Hahn Y 1981 Phys. Rev. A 24 785

    [17]

    Brooks R, Datla R, Griem H R 1978 Phys. Rev. Lett. 41 107

    [18]

    Müller A, Belić D, DePaola B, Djurić N, Dunn G, Mueller D, Timmer C 1987 Phy. Rev. A 36 599

    [19]

    Schippers S 2015 Nucl. Instrum. Methods Phys. Res., Sect. B 350 61

    [20]

    Brandau C, Kozhuharov C (Shevelko V, Tawara H ed) 2012 Atomic Processes in Basic and Applied Physics (Berlin, Heidelberg: Springer) pp283-306

    [21]

    Schuch R, Böhm S 2007 J. Phys. Conf. Ser. 88 012002

    [22]

    Huang Z K, Wen W Q, Wang H B, Xu X, Zhu L F, Chuai X Y, Yuan Y J, Zhu X L, Han X Y, Mao L J, Li J, Ma X M, Yan T L, Yang J C, Xiao G Q, Xia J W, Ma X 2015 Phys. Scr. T166 014023

    [23]

    Huang Z, Wang S, Wen W, Wang H, Ma W, Chen C, Zhang C, Chen D, Huang H, Shao L, Liu X, Zhou X, Mao L, Li J, Ma X, Tang M, Yang J, Yuan Y, Zhang S, Zhu L, Ma X 2023 Chin. Phys. B 32 073401

    [24]

    Danared H, Andler G, Bagge L, Herrlander C J, Hilke J, Jeansson J, Källberg A, Nilsson A, Paál A, Rensfelt K G, Rosengård U, Starker J, af Ugglas M 1994 Phys. Rev. Lett. 72 3775

    [25]

    Lestinsky M, Lindroth E, Orlov D A, Schmidt E W, Schippers S, Böhm S, Brandau C, Sprenger F, Terekhov A S, Müller A, Wolf A 2008 Phys. Rev. Lett. 100 033001

    [26]

    Brandau C, Kozhuharov C, Harman Z, Müller A, Schippers S, Kozhedub Y S, Bernhardt D, Böhm S, Jacobi J, Schmidt E W, Mokler P H, Bosch F, Kluge H J, Stöhlker T, Beckert K, Beller P, Nolden F, Steck M, Gumberidze A, Reuschl R, Spillmann U, Currell F J, Tupitsyn I I, Shabaev V M, Jentschura U D, Keitel C H, Wolf A, Stachura Z 2008 Phys. Rev. Lett. 100 073201

    [27]

    Schippers S, Schmidt E W, Bernhardt D, Yu D, Muller A, Lestinsky M, Orlov D A, Grieser M, Repnow R, Wolf A 2007 Phys. Rev. Lett. 98 033001

    [28]

    Huang Z K, Wen W Q, Xu X, Mahmood S, Wang S X, Wang H B, Dou L J, Khan N, Badnell N R, Preval S P, Schippers S, Xu T H, Yang Y, Yao K, Xu W Q, Chuai X Y, Zhu X L, Zhao D M, Mao L J, Ma X M, Li J, Mao R S, Yuan Y J, Wu B, Sheng L N, Yang J C, Xu H S, Zhu L F, Ma X 2018 Astrophys. J. Suppl. Ser. 235 2

    [29]

    Wang S X, Xu X, Huang Z K, Wen W Q, Wang H B, Khan N, Preval S P, Badnell N R, Schippers S, Mahmood S, Dou L J, Chuai X Y, Zhao D M, Zhu X L, Mao L J, Ma X M, Li J, Mao R S, Yuan Y J, Tang M T, Yin D Y, Yang J C, Ma X, Zhu L F 2018 Astrophys. J. 862 2

    [30]

    Wang S X, Huang Z K, Wen W Q, Chen C Y, Schippers S, Xu X, Sardar S, Khan N, Wang H B, Dou L J, Mahmood S, Zhao D M, Zhu X L, Mao L J, Ma X M, Li J, Tang M T, Mao R S, Yin D Y, Yuan Y J, Yang J C, Shi Y L, Dong C Z, Ma X W, Zhu L F 2019 Astron. Astrophys. 627 A171

    [31]

    Wang S X, Huang Z K, Wen W Q, Ma W L, Wang H B, Schippers S, Wu Z W, Kozhedub Y S, Kaygorodov M Y, Volotka A V, Wang K, Zhang C Y, Chen C Y, Liu C, Huang H K, Shao L, Mao L J, Ma X M, Li J, Tang M T, Yan K M, Zhou Y B, Yuan Y J, Yang J C, Zhang S F, Ma X, Zhu L F 2022 Phys. Rev. A 106 042808

    [32]

    Huang Z K, Wen W Q, Wang S X, Khan N, Wang H B, Chen C Y, Zhang C Y, Preval S P, Badnell N R, Ma W L, Liu X, Chen D Y, Zhu X L, Zhao D M, Mao L J, Ma X M, Li J, Tang M T, Mao R S, Yin D Y, Yang W Q, Yang J C, Yuan Y J, Zhu L F, Ma X 2020 Phys. Rev. A 102 062823

    [33]

    Shao L, Huang Z-K, Wen W-Q, Wang S-X, Huang H-K, Ma W-L, Liu C, Wang H-B, Chen D-Y, Liu X, Zhou X-P, Zhao D-M, Zhang S-F, Zhu L-F, Ma X-W 2024 Acta Phys. Sin.73 123402 (in Chinese) [邵林, 黄忠魁,汶伟强, 汪书兴, 黄厚科,马万路, 刘畅, 汪寒冰,陈冬阳, 刘鑫, 周晓鹏,赵冬梅, 张少锋, 朱林繁,马新文 2024 物理学报73 123402]

    [34]

    Ma Y G, Zhao H W 2020 Sci. Sin.-Phys. Mech. Astron. 50 112001 (in Chinese) [马余刚,赵红卫 2020 中国科学:物理学 力学 天文学50 112001]

    [35]

    Ma X W, Zhang S F, Wen W Q, Yang J, Zhu X L, Qian D B, Yan S C, Zhng P M, Guo D L, Wang H B, Huang Z K 2020 Sci. Sin.-Phys. Mech. Astron. 50 112008 (in Chinese) [马新文, 张少锋,汶伟强, 杨杰, 朱小龙,钱东斌, 闫顺成, 张鹏鸣,郭大龙, 汪寒冰, 黄忠魁2020中国科学: 物理学 力学 天文学 50 112008]

    [36]

    Huang Z K, Wen W Q, Xu X, Wang H B, Dou L J, Chuai X Y, Zhu X L, Zhao D M, Li J, Ma X M, Mao L J, Yang J C, Yuan Y J, Xu W Q, Xie L Y, Xu T H, Yao K, Dong C Z, Zhu L F, Ma X 2017 Nucl. Instrum. Methods Phys. Res., Sect. B 408 135

    [37]

    Håkan D 1995 Phys. Scr. 1995 121

    [38]

    Zaghloul M R 2017 ACM Trans. Math. Softw. 44 Article 22

    [39]

    Dou L, Xie L, Zhang D, Dong C, Wen W, Huang Z, Ma X 2017 Euro. Phys. J. D 71 128

    [40]

    Li C Y, Liu X J, Meng G W, Wang J G 2010 Acta Phys. Sin. 59 6044 (in Chinese) [李传莹, 刘晓菊, 孟广为,王建国 2010 物理学报59 6044]

    [41]

    Danared H 1993 Nucl. Instrum. Methods Phys. Res., Sect. A 335 397

    [42]

    Danared H 1998 Hyperfine Interact. 115 61

    [43]

    Zubova N A, Kozhedub Y S, Shabaev V M, Tupitsyn I I, Volotka A V, Plunien G, Brandau C, Stöhlker T 2014 Phys. Rev. A 90 062512

    [44]

    Chuai X Y, Huang Z K, Wen W Q, Wang H B, Xu X, Wang S X, Li J G, Dou L J, Zhao D M, Zhu X L, Mao L J, Yin D Y, Yang J C, Yuan Y J, Ma X W 2018 Nucl. Phys. Rev.35 196 (in Chinese) [啜晓亚, 黄忠魁,汶伟强, 汪寒冰, 许鑫,汪书兴, 李冀光, 豆丽君,赵冬梅, 朱小龙, 冒立军,殷达钰, 杨建成, 原有进,马新文 2018 原子核物理评论35 196]

  • [1] Wu Yi-Jiao, Meng Tian-Ming, Zhang Xian-Wen, Tan Xu, Ma Pu-Fang, Yin Hao, Ren Bai-Hui, Tu Bing-Sheng, Zhang Rui-Tian, Xiao Jun, Ma Xin-Wen, Zou Ya-Ming, Wei Bao-Ren. Experimental measurement of state selective double electron capture in collision between 1.4–20 keV/u Ar8+ with He. Acta Physica Sinica, doi: 10.7498/aps.73.20241290
    [2] Shao Lin, Huang Zhong-Kui, Wen Wei-Qiang, Wang Shu-Xing, Huang Hou-Ke, Ma Wan-Lu, Liu Chang, Wang Han-Bing, Chen Dong-Yang, Liu Xin, Zhou Xiao-Peng, Zhao Dong-Mei, Zhang Shao-Feng, Zhu Lin-Fan, Ma Xin-Wen. Dielectronic recombination experiment of Na-like Kr25+ at heavy ion storage ring CSRe. Acta Physica Sinica, doi: 10.7498/aps.73.20240211
    [3] Zhang Bing-Zhang,  Song Zhang-Yong,  Zhang Ming-Wu,  Liu Xuan,  Qian Cheng,  Fang Xin,  Shao Chao-Jie,  Wang Wei,  Liu Jun-Liang,  Zhu Zhi-Chao,  Sun Liang-Ting,  Yu De-Yang. Theoretical and experimental studies on the captured electron population probability of hydrogen-like O and N ions in collision with Al surface. Acta Physica Sinica, doi: 10.7498/aps.71.20212434
    [4] Zhang Bing-Zhang, Song Zhang-Yong, Zhang Ming-Wu, Liu Xuan, Qian Cheng, Fang Xing, Shao Cao-Jie, Wang Wei, Liu Jun-Liang, Zhu Zhi-Chao, Sun Liang-Ting, Yu De-Yang. Theoretical and experimental studies on the captured electron population probability of hydrogen-like O and N ions in collision with Al surface. Acta Physica Sinica, doi: 10.7498/aps.70.20212434
    [5] Liu Xin, Zhou Xiao-Peng, Wen Wei-Qiang, Lu Qi-Feng, Yan Cheng-Long, Xu Guo-Qin, Xiao Jun, Huang Zhong-Kui, Wang Han-Bing, Chen Dong-Yang, Shao Lin, Yuan Yang, Wang Shu-Xing, Ma Wan-Lu, Ma Xin-Wen. Spectral calibration for electron beam ion trap and precision measurement of M1 transition wavelength in Ar13+. Acta Physica Sinica, doi: 10.7498/aps.71.20211663
    [6] Spectral Calibration for Electron Beam Ion Trap and Precision Measurement of M1 Transition Wavelength in Ar13+. Acta Physica Sinica, doi: 10.7498/aps.70.20211663
    [7] Fu Yan-Biao, Wang Xu-Dong, Su Mao-Gen, Dong Chen-Zhong. Theoretical studies of dielectronic recombination for Au34+ ions. Acta Physica Sinica, doi: 10.7498/aps.65.033401
    [8] Wang Xing, Zhao Yong-Tao, Cheng Rui, Zhou Xian-Ming, Xu Ge, Sun Yuan-Bo, Lei Yu, Wang Yu-Yu, Ren Jie-Ru, Yu Yang, Li Yong-Feng, Zhang Xiao-An, Li Yao-Zong, Liang Chang-Hui, Xiao Guo-Qing. Multiple ionization effect of Ta induced by heavy ions. Acta Physica Sinica, doi: 10.7498/aps.61.193201
    [9] Yang Jian-Hui, Fan Qiang, Zhang Jian-Ping. The study of dielectronic recombination (DR) rate coefficient for ground state of Ne-like isoelectronic sequence ions. Acta Physica Sinica, doi: 10.7498/aps.61.193101
    [10] Wang Wei, Jiang Gang. Study on rate coefficient of dielectronic recombination in dense plasma based on doubly excited state. Acta Physica Sinica, doi: 10.7498/aps.59.7815
    [11] Wang Li, Zhang Xiao-An, Yang Zhi-Hu, Chen Xi-Meng, Zhang Hong-Qiang, Cui Ying, Shao Jian-Xiong, Xu Xu. The coulomb potential energy effect on the intensity of the characteristic lines at highly charged ion incendence on Al surface. Acta Physica Sinica, doi: 10.7498/aps.57.137
    [12] Shi Ying-Long, Dong Chen-Zhong, Zhang Deng-Hong, Fu Yan-Biao. Theoretical study on the dielectronic recombination of highly charged mercury and uranium ions. Acta Physica Sinica, doi: 10.7498/aps.57.88
    [13] Zhao Yong-Tao, Xiao Guo-Qing, Xu Zhong-Feng, Abdul Qayyum, Wang Yu-Yu, Zhang Xiao-An, Li Fu-Li, Zhan Wen-Long. The electron emission yield induced by the interaction of highly charged argon ions with silicon surface. Acta Physica Sinica, doi: 10.7498/aps.56.5734
    [14] Yang Zhi-Hu, Song Zhang-Yong, Chen Xi-Meng, Zhang Xiao-An, Zhang Yan-Ping, Zhao Yong-Tao, Cui Ying, Zhang Hong-Qiang, Xu Xu, Shao Jian-Xiong, Yu De-Yang, Cai Xiao-Hong. X-ray emission produced by interaction of highly ionized Arq+ ions with metallic targets. Acta Physica Sinica, doi: 10.7498/aps.55.2221
    [15] Wang Yu-Yu, Zhao Yong-Tao, Xiao Guo-Qing, Fang Yan, Zhang Xiao-An, Wang Tie-Shan, Wang Shi-Wei, Peng Hai-Bo. Electron emission induced by the interaction of highly charged ions 207Pbq+(24≤q≤36) with solid surface of Si(110). Acta Physica Sinica, doi: 10.7498/aps.55.673
    [16] Zhang Deng-Hong, Dong Chen-Zhong, Xie Lu-You, Ding Xiao-Bin, Fu Yan-Biao. Relativistic theoretical study on the KLL dielectronic recombination of helium-like ions. Acta Physica Sinica, doi: 10.7498/aps.55.112
    [17] Dong Chen-Zhong, Fu Yan-Biao. Theoretical studies of dielectronic recombination and resonant transfer excitation for highly ionized Cu18+ ions. Acta Physica Sinica, doi: 10.7498/aps.55.107
    [18] Yi You-Gen, Zheng Zhi-Jian, Yan Jun, Li Ping, Fang Quan-Yu, Qiu Yu-Bo. Dielectronic recombination from Fe like Au^53+ to Ga like Au^47+ ions*. Acta Physica Sinica, doi: 10.7498/aps.51.2740
    [19] Sheng Yong, Jiang Gang, Zhu Zheng-He. . Acta Physica Sinica, doi: 10.7498/aps.51.501
    [20] Jiao Rong-Zhen, Cheng Xin-Lu, Yang Xiang-Dong, Zhu Jun. . Acta Physica Sinica, doi: 10.7498/aps.51.1755
Metrics
  • Abstract views:  179
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Available Online:  25 December 2024

/

返回文章
返回