Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dielectronic recombination experiment of Na-like Kr25+ at the heavy ion storage ring CSRe

Shao Lin Huang Zhong-Kui Wen Wei-Qiang Wang Shu-xing Huang Hou-Ke Ma Wan-Lu Liu Chang Wang Han-Bing Chen Dong-Yang Liu Xin Zhou Xiao-peng Zhao Dong-mei Zhang Shao-feng Zhu Lin-fan Ma Xin-wen

Citation:

Dielectronic recombination experiment of Na-like Kr25+ at the heavy ion storage ring CSRe

Shao Lin, Huang Zhong-Kui, Wen Wei-Qiang, Wang Shu-xing, Huang Hou-Ke, Ma Wan-Lu, Liu Chang, Wang Han-Bing, Chen Dong-Yang, Liu Xin, Zhou Xiao-peng, Zhao Dong-mei, Zhang Shao-feng, Zhu Lin-fan, Ma Xin-wen
PDF
Get Citation
  • The experimental study of precision spectroscopy of dielectronic recombination (DR) of highly charged ions is not only important for astronomical plasmas and fusion plasmas, but also can be used as a new precision spectroscopy method to test the strong-field quantum electrodynamic effect, measure isotope shift and extract the radius of atomic nuclei. An specially designed electron beam energy detuning system for electron-ion recombination precision spectroscopy experiments has been installed at the heavy ion storage ring CSRe in Lanzhou, where the electron-ion collision energy under the center-of-mass system can be detuned to 1 keV, and an independently-developed plastic scintillator detector and multiwire proportional chamber detector have been installed downstream of the electron cooler of the CSRe for the detection of recombined ions. The multiwire proportional chamber detector has the ability to non-destructively monitor the profile of the ion beam in real-time while acquiring the recombined ion counts, providing guidance for optimization of the ion beam. On this basis, the first test experiment of dielectronic recombination of Kr25+ ions has been carried out at the CSRe, and the dielectronic recombination rate coefficients in the range of 0-70 eV at the frame of center-of-mass were measured. In order to fully understand the experimental results, we calculated the dielectronic recombination rate coefficients of the Kr25+ ion using the Flexible Atomic Code (FAC) and made a detailed comparison with the experiment, which is in good agreement, and only the resonance energies of the two resonance peaks at 1.695 eV and 2.573 eV are significantly different. In addition, the DR resonance energies and intensities were obtained by fitting the experimental results in the range 0-35 eV, and we found that the transition 3s→4l (∆n=1) contributes significantly to the experimental spectral lines. Furthermore, we compare the plasma rate coefficients derived from the DR rate coefficients with those derived from the AUTOSTRUCTURE and FAC theories, which differ by 20 percent in the temperature range less than 106 K. The experimental results show that the DR experimental platform of the CSRe has very good stability and reproducibility, and can provide support for the future DR experiments of highly charged ion, i.e. for testing strong-field quantum electrodynamics effect and measuring the properties of atomic nuclei.
  • [1]

    Gillaspy J D 2001 J. Phys. B:At. Mol. Opt. Phys. 34 R93

    [2]

    Kozlov M, Safronova M, López-Urrutia J C, Schmidt P 2018 Rev. Mod. Phys. 90 045005

    [3]

    Lindroth E, Danared H, Glans P, Pešić Z, Tokman M, Vikor G, Schuch R 2001 Phys. Rev. Lett. 86 5027

    [4]

    Brandau C, Kozhuharov C, Müller A, Shi W, Schippers S, Bartsch T, Böhm S, Böhme C, Hoffknecht A, Knopp H, Grün N, Scheid W, Steih T, Bosch F, Franzke B, Mokler P H, Nolden F, Steck M, Stöhlker T, Stachura Z 2003 Phys. Rev. Lett. 91 073202

    [5]

    Schuch R, Lindroth E, Madzunkov S, Fogle M, Mohamed T, Indelicato P 2005 Phys. Rev. Lett. 95 183003

    [6]

    Brandau C, Kozhuharov C, Harman Z a, Müller A, Schippers S, Kozhedub Y S, Bernhardt D, Böhm S, Jacobi J, Schmidt E W, Mokler P H, Bosch F, Kluge H-J, Stöhlker T, Beckert K, Beller P, Nolden F, Steck M, Gumberidze A, Reuschl R, Spillmann U, Currell F, Tupitsyn I I, Shabaev V M, Jentschura U D, Keitel C H, Wolf A, Stachura Z 2008 Phys. Rev. Lett. 100 7 073201

    [7]

    Chuai X Y, Huang Z K, Wen W Q, Wang H B, Xu X, Wang S X, Li J G, Dou L J, Zhao D M, Zhu X L, Mao L J, Yin D Y, Yang J C, Yuan Y J, Ma X W 2018 Nucl. Phys. Rev.35 196 (in Chinese)[啜晓亚, 黄忠魁, 汶伟强, 汪寒冰, 许鑫, 汪书兴, 李冀光, 豆丽君, 赵冬梅, 朱小龙, 冒立军, 殷达钰, 杨建成, 原有进, 马新文 2018 原子核物理评论 35 196]

    [8]

    Kieslich S, Schippers S, Shi W, Müller A, Gwinner G, Schnell M, Wolf A, Lindroth E, Tokman M 2004 Phys. Rev. A 70 042714

    [9]

    Budker G, Kiselev A, Konkov N, Naumov A, Niffontov V, Ostreiko G, Petrov V, Yudin L, Yasnov G 1965 V International Conference on High Energy Accelerators ProceedingsFrascati, September 9-16, 1965 p455

    [10]

    Poth H 1990 Phys. Rep. 196 135

    [11]

    Mitchell J, Ng C, Forand J, Levac D, Mitchell R, Sen A, Miko D, McGowan J W 1983 Phys. Rev. Lett. 50 335

    [12]

    Dittner P, Datz S, Miller P, Moak C, Stelson P H, Bottcher C, Dress W, Alton G, Nešković N, Fou C 1983 Phys. Rev. Lett. 51 31

    [13]

    Müller A 2008 Advances In Atomic, Molecular, and Optical Physics (Academic Press) pp293-417

    [14]

    Schippers S 2015 Nucl. Instrum. Methods Phys. Res. B 350 61

    [15]

    Huang Z K, Wen W Q, Xu X, Mahmood S, Wang S X, Wang H B, Dou L J, Khan N, Badnell N R, Preval S P, Schippers S, Xu T H, Yang Y, Yao K, Xu W Q, Chuai X Y, Zhu X L, Zhao D M, Mao L J, Ma X M, Li J, Mao R S, Yuan Y J, Wu B, Sheng L N, Yang J C, Xu H S, Zhu L F, Ma X 2018 Astrophys. J. Suppl. Ser. 235 2

    [16]

    Khan N, Huang Z-K, Wen W-Q, Mahmood S, Dou L-J, Wang S-X, Xu X, Wang H-B, Chen C-Y, Chuai X-Y, Zhu X-L, Zhao D-M, Mao L-J, Li J, Yin D-Y, Yang J-C, Yuan Y-J, Zhu L-F, Ma X-W 2018 Chinese Phys. C 42 064001

    [17]

    Wang S X, Xu X, Huang Z K, Wen W Q, Wang H B, Khan N, Preval S P, Badnell N R, Schippers S, Mahmood S, Dou L J, Chuai X Y, Zhao D M, Zhu X L, Mao L J, Ma X M, Li J, Mao R S, Yuan Y J, Tang M T, Yin D Y, Yang J C, Ma X, Zhu L F 2018 Astrophys. J.862 134

    [18]

    Wang S-X, Huang Z-K, Wen W-Q, Chen C-Y, Schippers S, Xu X, Sardar S, Khan N, Wang H-B, Dou L-J, Mahmood S, Zhao D-M, Zhu X-L, Mao L-J, Ma X-M, Li J, Tang M-T, Mao R-S, Yin D-Y, Yuan Y-J, Yang J-C, Shi Y-L, Dong C-Z, Ma X-W, Zhu L-F 2019 Astron. Astrophys. 627 171

    [19]

    Huang Z K, Wang S X, Wen W Q, Xu X, Wang H B, Li S, Dou L J, Khan N, Mahmood S, Zhu X L, Zhao D M, Mao L J, Ma X M, Li J, Mao R S, Yang J C, Yin D Y, Yuan Y J, Chen C Y, Zhu L F, Ma X 2020 X-Ray Spectrom.49 155

    [20]

    Wen W Q, Huang Z K, Wang S X, Khan N, Wang H B, Chen C Y, Zhang C Y, Preval S, Badnell N R, Ma W L, Chen D Y, Liu X, Zhao D M, Mao L J, Li J, Ma X M, Tang M T, Yin D Y, Yang W Q, Yuan Y J, Yang J C, Zhu L F, Ma X 2020 Astrophys. J 905 36

    [21]

    Khan N, Huang Z-K, Wen W-Q, Wang S-X, Chen C-Y, Zhang C-Y, Wang H-B, Liu X, Ma W-L, Chen D-Y, Yao K, Zhao D-M, Mao L-J, Ma X-M, Li J, Tang M-T, Yin D-Y, Yuan Y-J, Yang J-C, Zhu L-F, Ma X-W 2022 J. Phys. B:At. Mol. Opt. Phys. 55 035001

    [22]

    Huang Z K, Wen W Q, Wang S X, Khan N, Wang H B, Chen C Y, Zhang C Y, Preval S P, Badnell N R, Ma W L, Liu X, Chen D Y, Zhu X L, Zhao D M, Mao L J, Ma X M, Li J, Tang M T, Mao R S, Yin D Y, Yang W Q, Yang J C, Yuan Y J, Zhu L F, Ma X 2020 Phys. Rev. A 102 062823

    [23]

    Shevelko V P, Stöhlker T, Tawara H, Tolstikhina I Y, Weber G 2010 Nucl. Instrum. Methods Phys. Res. B 268 2611

    [24]

    Yan K, Zhou Y, Ma X, Tang M, Gao D, Zhao H, Huang Z, Wen W, Mao L 2023 Nucl. Instrum. Methods Phys. Res. A 1046 167699

    [25]

    Skorobogatov D, Bryzgunov M, Kondaurov M, Putmakov A, Reva V, Repkov V 2019 Proceedings of the 12th Workshop on Beam Cooling and Related TopicsNovosibirsk, Russia,September 24-27 ,2019 p86-88

    [26]

    Menz E B, Hahn C, Pfäfflein P, Weber G, Stöhlker T 2020 J. Phys.:Conf. Ser. 1412 232006

    [27]

    Westman S, Kerek A, Klamra W, Norlin L-O, Novak D 2002 Nucl. Instrum. Methods Phys. Res. A 481 655

    [28]

    Miersch G, Habs D, Kenntner J, Schwalm D, Wolf A 1996 Nucl. Instrum. Methods Phys. Res. A 369 277

    [29]

    Klepper O, Kozhuharov C 2003 Nucl. Instrum. Methods Phys. Res. B 204 553

    [30]

    Ye Y L, Di Z Y, Li Z H, Wang Q J, Zheng T, Chen T, Jiang D X, Ge Y C, Pang D Y, Li X Q 2003 Nucl. Instrum. Methods Phys. Res. A 515 718

    [31]

    Kilgus G, Habs D, Schwalm D, Wolf A, Badnell N R, Muller A 1992 Phys. Rev. A 46 5730

    [32]

    Schippers S, Bartsch T, Brandau C, Müller A, Gwinner G, Wissler G, Beutelspacher M, Grieser M, Wolf A, Phaneuf R A 2000 Phys. Rev. A 62 022708

    [33]

    Danared H 1995 Phys. Scr. 1995 121

    [34]

    Huang Z K, Wen W Q, Xu X, Mahmood S, Wang S X, Wang H B, Dou L J, Khan N, Badnell N R, Preval S P, Schippers S, Xu T H, Yang Y, Yao K, Xu W Q, Chuai X Y, Zhu X L, Zhao D M, Mao L J, Ma X M, Li J, Mao R S, Yuan Y J, Wu B, Sheng L N, Yang J C, Xu H S, Zhu L F, Ma X 2018 Astrophys. J. Suppl. Ser. 235

    [35]

    Badnell N R 2011 Comput. Phys. Commun. 182 1528

    [36]

    Badnell N 2006 Astrophys. J 651 L73

    [37]

    Gu M F 2008 Can. J..Phys. 86 675

    [38]

    Gu M F 2003 Astrophys. J 590 1131

    [39]

    Schippers S, Müller A, Gwinner G, Linkemann J, Saghiri A, Wolf A 2001 Astrophys. J 555 1027

    [40]

    Schippers S, Schnell M, Brandau C, Kieslich S, Müller A, Wolf A 2004 Astron. Astrophys. 421 1185

  • [1] Sun Tang-You, Yu Yan-Li, Qin Zu-Bin, Chen Zan-Hui, Chen Jun-Li, Jiang Yue, Zhang Fa-Bi. Multi-band response Cs2AgBiBr6 double perovskite photodetector based on TiO2 nanopillars. Acta Physica Sinica, doi: 10.7498/aps.73.20231919
    [2] Li Hang, Chen Ping, Tian Jin-Shou, Xue Yan-Hua, Wang Jun-Feng, Gou Yong-Sheng, Zhang Min-Rui, He Kai, Xu Xiang-Yan, Sai Xiao-Feng, Li Ya-Hui, Liu Bai-Yu, Wang Xiang-Lin, Xin Li-Wei, Gao Gui-Long, Wang Tao, Wang Xing, Zhao Wei. High time-resolution detector based on THz pulse accelerating and scanning electron beam. Acta Physica Sinica, doi: 10.7498/aps.71.20210871
    [3] Wen Zhi-Wen, Qi Hui-Rong, Zhang Yu-Lian, Wang Hai-Yun, Liu Ling, Wang Yan-Feng, Zhang Jian, Li Yu-Hong, Sun Zhi-Jia. Development of high-pressure multi-wire proportional chamber neutron detector for the China Spallation Neutron Source multipurpose reflectometer. Acta Physica Sinica, doi: 10.7498/aps.67.20172618
    [4] Zhang Tian-Kui, Yu Ming-Hai, Dong Ke-Gong, Wu Yu-Chi, Yang Jing, Chen Jia, Lu Feng, Li Gang, Zhu Bin, Tan Fang, Wang Shao-Yi, Yan Yong-Hong, Gu Yu-Qiu. Detector characterization and electron effect for laser-driven high energy X-ray imaging. Acta Physica Sinica, doi: 10.7498/aps.66.245201
    [5] Wen Zhi-Wen, Qi Hui-Rong, Wang Yan-Feng, Sun Zhi-Jia, Zhang Yu-Lian, Wang Hai-Yun, Zhang Jian, Ouyang Qun, Chen Yuan-Bo, Li Yu-Hong. Readout method for two-dimensional multi-wire proportional chamber. Acta Physica Sinica, doi: 10.7498/aps.66.072901
    [6] Fu Yan-Biao, Wang Xu-Dong, Su Mao-Gen, Dong Chen-Zhong. Theoretical studies of dielectronic recombination for Au34+ ions. Acta Physica Sinica, doi: 10.7498/aps.65.033401
    [7] Wen Zhi-Wen, Qi Hui-Rong, Dai Hong-Liang, Zhang Yu-Lian, Zhang Jian, Wei Kun, Ouyang Qun, Shao Jian-Xiong. Modified method for diffraction aberration of one-dimensional wire chamber. Acta Physica Sinica, doi: 10.7498/aps.64.082901
    [8] Fan Sheng-Nan, Wang Bo, Qi Hui-Rong, Liu Mei, Zhang Yu-Lian, Zhang Jian, Liu Rong-Guang, Yi Fu-Ting, Ouyang Qun, Chen Yuan-Bo. Study on the performance of a high-gain gas electron multiplier-MicroMegas chamber. Acta Physica Sinica, doi: 10.7498/aps.62.122901
    [9] Yang Jian-Hui, Fan Qiang, Zhang Jian-Ping. The study of dielectronic recombination (DR) rate coefficient for ground state of Ne-like isoelectronic sequence ions. Acta Physica Sinica, doi: 10.7498/aps.61.193101
    [10] Wang Wei, Jiang Gang. Study on rate coefficient of dielectronic recombination in dense plasma based on doubly excited state. Acta Physica Sinica, doi: 10.7498/aps.59.7815
    [11] Shi Ying-Long, Dong Chen-Zhong, Zhang Deng-Hong, Fu Yan-Biao. Theoretical study on the dielectronic recombination of highly charged mercury and uranium ions. Acta Physica Sinica, doi: 10.7498/aps.57.88
    [12] Zhang Deng-Hong, Dong Chen-Zhong, Xie Lu-You, Ding Xiao-Bin, Fu Yan-Biao. Relativistic theoretical study on the KLL dielectronic recombination of helium-like ions. Acta Physica Sinica, doi: 10.7498/aps.55.112
    [13] Dong Chen-Zhong, Fu Yan-Biao. Theoretical studies of dielectronic recombination and resonant transfer excitation for highly ionized Cu18+ ions. Acta Physica Sinica, doi: 10.7498/aps.55.107
    [14] Yi You-Gen, Zheng Zhi-Jian, Yan Jun, Li Ping, Fang Quan-Yu, Qiu Yu-Bo. Dielectronic recombination from Fe like Au^53+ to Ga like Au^47+ ions*. Acta Physica Sinica, doi: 10.7498/aps.51.2740
    [15] Sheng Yong, Jiang Gang, Zhu Zheng-He. . Acta Physica Sinica, doi: 10.7498/aps.51.501
    [16] Jiao Rong-Zhen, Cheng Xin-Lu, Yang Xiang-Dong, Zhu Jun. . Acta Physica Sinica, doi: 10.7498/aps.51.1755
    [17] YANG ZHEN-HUA, WU YU-PU. ELECTRON BEAM ENERGY MODULATION IN SR-FREE ELECTRON LASER. Acta Physica Sinica, doi: 10.7498/aps.46.279
    [18] Chen Shi-Gang, Wang Wen-Jie, Wang Guang-Rui. . Acta Physica Sinica, doi: 10.7498/aps.44.862
    [19] WU GUN-HUNG, WANG YUN-YU, TANG XIAO-WEI. MEASUREMENT OF 3γ ANNIHILATION OF POSITRON USING Ge (Li) DETECTOR. Acta Physica Sinica, doi: 10.7498/aps.32.417
    [20] LI JIA-MING. A MULTICHANNEL THEORY OF INVERSE TWO-ELECTRON RECOMBINATION. Acta Physica Sinica, doi: 10.7498/aps.32.84
Metrics
  • Abstract views:  92
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Available Online:  08 May 2024

/

返回文章
返回