Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dielectronic recombination experiment of Na-like Kr25+ at heavy ion storage ring CSRe

Shao Lin Huang Zhong-Kui Wen Wei-Qiang Wang Shu-Xing Huang Hou-Ke Ma Wan-Lu Liu Chang Wang Han-Bing Chen Dong-Yang Liu Xin Zhou Xiao-Peng Zhao Dong-Mei Zhang Shao-Feng Zhu Lin-Fan Ma Xin-Wen

Citation:

Dielectronic recombination experiment of Na-like Kr25+ at heavy ion storage ring CSRe

Shao Lin, Huang Zhong-Kui, Wen Wei-Qiang, Wang Shu-Xing, Huang Hou-Ke, Ma Wan-Lu, Liu Chang, Wang Han-Bing, Chen Dong-Yang, Liu Xin, Zhou Xiao-Peng, Zhao Dong-Mei, Zhang Shao-Feng, Zhu Lin-Fan, Ma Xin-Wen
PDF
HTML
Get Citation
  • The experimental study of precision spectroscopy of dielectronic recombination (DR) of highly charged ions is not only important for astronomical plasma and fusion plasma, but also can be used as a new precision spectroscopy to test the strong-field quantum electrodynamic effect, measure isotope shift, and extract the radius of atomic nuclei. An specially designed electron beam energy detuning system for electron-ion recombination precision spectroscopy experiments has been installed on the heavy ion storage ring CSRe in Lanzhou, China, where the electron-ion collision energy in the center-of-mass system can be detuned to 1 keV, and an independently-developed plastic scintillator detector and multiwire proportional chamber detector have been installed downstream of the electron cooler of the CSRe for detecting recombined ions. The multiwire proportional chamber detector has the ability to non-destructively monitor the profile of the ion beam in real-time while acquiring the recombined ion counts, providing guidance for optimizing the ion beam. On this basis, the first test experiment on dielectronic recombination of Kr25+ ions is carried out at the CSRe, and the dielectronic recombination rate coefficients in a range of 0–70 eV in the frame of center-of-mass are measured. In order to fully understand the experimental results, we calculate the dielectronic recombination rate coefficient of the Kr25+ ion by using the flexible atomic code (FAC) and make a detailed comparison with the experimental result, showing that they are in good agreement with each other, and only the resonance energy values of the two resonance peaks at 1.695 eV and 2.573 eV are significantly different. In addition, the DR resonance energy values and intensities are obtained by fitting the experimental results in a range of 0–35 eV, and we find that the transition 3s→4l (∆n = 1) contributes significantly to the experimental spectral lines. Furthermore, we compare the plasma rate coefficients derived from the DR rate coefficients with those derived from the AUTOSTRUCTURE and FAC theories, which differ by 20 percent in a temperature range less than 106 K. The experimental results show that the DR experimental platform of the CSRe has very good stability and reproducibility, and can provide support for the future DR experiments of highly charged ion, i.e. for testing strong-field quantum electrodynamics effect and measuring the properties of atomic nuclei.
      Corresponding author: Wen Wei-Qiang, wenweiqiang@impcas.ac.cn ; Zhu Lin-Fan, lfzhu@ustc.edu.cn ; Ma Xin-Wen, x.ma@impcas.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1602500), the National Natural Science Foundation of China (Grant Nos. 12393824, 12334010, U1932207), the Strategic Priority Research Program (B) of Chinese Academy of Science (Grant No. XDB34020000), and the Youth Innovation Promotion Association of the Chinese Academy of Science.
    [1]

    Gillaspy J D 2001 J. Phys. B: At. Mol. Opt. Phys. 34 R93Google Scholar

    [2]

    Kozlov M, Safronova M, López-Urrutia J C, Schmidt P 2018 Rev. Mod. Phys. 90 045005Google Scholar

    [3]

    Lindroth E, Danared H, Glans P, Pešić Z, Tokman M, Vikor G, Schuch R 2001 Phys. Rev. Lett. 86 5027Google Scholar

    [4]

    Brandau C, Kozhuharov C, Müller A, et al. 2003 Phys. Rev. Lett. 91 073202Google Scholar

    [5]

    Schuch R, Lindroth E, Madzunkov S, Fogle M, Mohamed T, Indelicato P 2005 Phys. Rev. Lett. 95 183003Google Scholar

    [6]

    Brandau C, Kozhuharov C, Harman Z A, et al. 2008 Phys. Rev. Lett. 100 073201Google Scholar

    [7]

    啜晓亚, 黄忠魁, 汶伟强, 等 2018 原子核物理评论 35 196Google Scholar

    Chuai X Y, Huang Z K, Wen W Q, et al. 2018 Nucl. Phys. Rev. 35 196Google Scholar

    [8]

    Kieslich S, Schippers S, Shi W, et al. 2004 Phys. Rev. A 70 042714Google Scholar

    [9]

    Budker G, Kiselev A, Konkov N, Naumov A, Niffontov V, Ostreiko G, Petrov V, Yudin L, Yasnov G 1965 V International Conference on High Energy Accelerators Proceedings Frascati, September 9–16, 1965 p455

    [10]

    Poth H 1990 Phys. Rep. 196 135Google Scholar

    [11]

    Mitchell J, Ng C, Forand J, Levac D, Mitchell R, Sen A, Miko D, McGowan J W 1983 Phys. Rev. Lett. 50 335Google Scholar

    [12]

    Dittner P, Datz S, Miller P, et al. 1983 Phys. Rev. Lett. 51 31Google Scholar

    [13]

    Müller A 2008 Advances In Atomic, Molecular, and Optical Physics (Academic Press) pp293–417

    [14]

    Schippers S 2015 Nucl. Instrum. Methods Phys. Res. , Sect. B 350 61Google Scholar

    [15]

    Huang Z K, Wen W Q, Xu X, et al. 2018 Astrophys. J. Suppl. Ser. 235 2Google Scholar

    [16]

    Khan N, Huang Z K, Wen W Q, Mahmood S, et al. 2018 Chin. Phys. C 42 064001Google Scholar

    [17]

    Wang S X, Xu X, Huang Z K, et al. 2018 Astrophys. J. 862 134Google Scholar

    [18]

    Wang S X, Huang Z K, Wen W Q, et al. 2019 Astron. Astrophys. 627 171Google Scholar

    [19]

    Huang Z K, Wang S X, Wen W Q, et al. 2020 X-Ray Spectrom. 49 155Google Scholar

    [20]

    Wen W Q, Huang Z K, Wang S X, et al. 2020 Astrophys. J. 905 36Google Scholar

    [21]

    Khan N, Huang Z K, Wen W Q, et al. 2022 J. Phys. B: At. Mol. Opt. Phys. 55 035001Google Scholar

    [22]

    Huang Z K, Wen W Q, Wang S X, et al. 2020 Phys. Rev. A 102 062823Google Scholar

    [23]

    Shevelko V P, Stöhlker T, Tawara H, Tolstikhina I Y, Weber G 2010 Nucl. Instrum. Methods Phys. Res., Sect. B 268 2611Google Scholar

    [24]

    Yan K, Zhou Y, Ma X, Tang M, Gao D, Zhao H, Huang Z, Wen W, Mao L 2023 Nucl. Instrum. Methods Phys. Res. , Sect. A 1046 167699Google Scholar

    [25]

    Skorobogatov D, Bryzgunov M, Kondaurov M, Putmakov A, Reva V, Repkov V 2019 Proceedings of the 12th Workshop on Beam Cooling and Related Topics Novosibirsk, Russia, September 24–27, 2019 pp86–88

    [26]

    Menz E B, Hahn C, Pfäfflein P, Weber G, Stöhlker T 2020 J. Phys. Conf. Ser. 1412 232006Google Scholar

    [27]

    Westman S, Kerek A, Klamra W, Norlin L O, Novak D 2002 Nucl. Instrum. Methods Phys. Res., Sect. A 481 655Google Scholar

    [28]

    Miersch G, Habs D, Kenntner J, Schwalm D, Wolf A 1996 Nucl. Instrum. Methods Phys. Res., Sect. A 369 277Google Scholar

    [29]

    Klepper O, Kozhuharov C 2003 Nucl. Instrum. Methods Phys. Res., Sect. B 204 553Google Scholar

    [30]

    Ye Y L, Di Z Y, Li Z H, Wang Q J, Zheng T, Chen T, Jiang D X, Ge Y C, Pang D Y, Li X Q 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 515 718Google Scholar

    [31]

    Kilgus G, Habs D, Schwalm D, Wolf A, Badnell N R, Muller A 1992 Phys. Rev. A 46 5730Google Scholar

    [32]

    Schippers S, Bartsch T, Brandau C, Müller A, Gwinner G, Wissler G, Beutelspacher M, Grieser M, Wolf A, Phaneuf R A 2000 Phys. Rev. A 62 022708Google Scholar

    [33]

    Danared H 1995 Phys. Scr. 59 121Google Scholar

    [34]

    Badnell N R 2011 Comput. Phys. Commun. 182 1528Google Scholar

    [35]

    Badnell N 2006 Astrophys. J. 651 L73Google Scholar

    [36]

    Gu M F 2008 Can. J. Phys. 86 675Google Scholar

    [37]

    Gu M F 2003 Astrophys. J. 590 1131Google Scholar

    [38]

    Schippers S, Müller A, Gwinner G, Linkemann J, Saghiri A, Wolf A 2001 Astrophys. J. 555 1027Google Scholar

    [39]

    Schippers S, Schnell M, Brandau C, Kieslich S, Müller A, Wolf A 2004 Astron. Astrophys. 421 1185Google Scholar

  • 图 1  $ {Z}^{q+} $离子的双电子复合过程示意  (a) 第一步共振过程, 离子在俘获一个自由电子的同时将一个内壳层电子激发, 从而形成自电离态$ {{[Z}^{(q-1)+}]}^{{\mathrm{*}}{\mathrm{*}}} $; (b) 第二步过程, 自电离态离子通过辐射光子从而退激发到稳定态

    Figure 1.  Schematic of DR of $ {Z}^{q+} $ ions: (a) The first resonance step, in which the ion captures a free electron and simultaneously excites an inner shell electron, resulting in the formation of the autoionized state $ {{[Z}^{(q-1)+}]}^{{\mathrm{*}}{\mathrm{*}}} $; (b) the second step, in which the ion is deexcited to the stable state by radiative decay.

    图 2  储存环CSRm与CSRe上的双电子复合实验平台示意图

    Figure 2.  Schematic view of the DR experimental platforms at the storage ring CSRm and CSRe.

    图 3  (a) CSRe上的高压电源调制系统示意图; (b) 电子束能量调制时序图, 插图为放大后的一个周期内的调制电压变化图

    Figure 3.  (a) Schematic diagram of the high voltage power supply modulation system of the CSRe; (b) the timing sequence of electron beam detuning voltage which is used in the DR experiment of Kr25+.

    图 4  储存环CSRe上的多丝正比探测器实物图, 黑色虚线方框内为延迟读出电路

    Figure 4.  Physical view of the MWPC detector, the black dashed box shows the delayed read-out circuitry.

    图 5  多丝正比探测器实时探测到的冷却前后的离子束包络分布图

    Figure 5.  Experimentally measured beam profiles before and after electron-cooling by the MWPC detector.

    图 6  (a) 复合离子探测器探测的复合离子计数-电子束调制能量谱; (b) 总的复合速率系数-质心系碰撞能量谱, 插图中的红色曲线为拟合结果, 拟合得到了电子束的横向温度与纵向温度; (c) 减去背景与RR的贡献后得到的绝对DR速率系数-碰撞能量谱

    Figure 6.  (a) Counts of recombined ions detected by the ion detector as a function of the electron beam detuning voltage; (b) total recombined rate coefficient at the center-of-mass collision energy; (c) the absolute DR rate coefficient by subtracting the contributions of the background and RR. In addition, the red curve in the inset of panel (b) is the fitting results.

    图 7  蓝色点线和红色实线分别为CSRe测量的Kr25+离子双电子复合速率与FAC计算的理论结果, 阴影部分为$ \Delta n=1 $的部分. 竖线为基于里德伯公式估算的双电子复合共振位置

    Figure 7.  Experimental (dotted blue line) and theoretical (red solid line) dielectronic recombination rate coefficients of the Na-like Kr25+ ions. The shaded part is the part with $ \Delta n=1 $ core excitation.

    图 8  Kr25+离子的实验(黑色实线)与FAC(红色虚线)及AUTOSTRUCTURE[22](蓝色实线)理论导出的等离子体速率系数谱对比

    Figure 8.  Comparision of plasma rate coefficients of sodium-like Kr25+ ions between experimental results (black solid line) and calculations by FAC (red dashed line) and AUTOSTRUCTURE (blue line) code.

    表 1  CSRe上Kr25+离子双电子复合实验参数

    Table 1.  Parameters of the DR experiment of Kr25+ at CSRe.

    实验参数 实验装置(CSRe)
    储存环周长/m 128.8
    相互作用长度/m 4.0
    离子束能量/(MeV·u–1) 80
    离子束流强/μA 300—450
    电子束流强/mA 287.5
    电子束半径/cm 2.60
    横向电子温度/meV 75.14
    纵向电子温度/meV 1.26
    冷却段磁场强度/G 390
    枪区磁场强度/G 1250
    DownLoad: CSV

    表 2  实验测量拟合结果与理论计算结果对比

    Table 2.  Comparison of experimental measurement fitting results with theoretical calculations.

    双激发态组态 共振能量/eV 共振强度/(10–19 eV·cm2)
    FAC 实验 FAC 实验
    4s[2S1/2]4d5/2 (J = 2)1.5301.695±0.00175.293.8±0.6
    3d[2D3/2]8s (J = 1)2.0902.119±0.0097.18.4±0.6
    3d[2D3/2]8s (J = 2)2.4052.573±0.00162.256.1±0.6
    3p[2P1/2]13s3.8693.804±0.0491.51.9±0.6
    3d[2D5/2]8s (J = 3)4.5307.3
    3p[2P1/2]13p1/24.565a4.4
    Blend4.543a4.561±0.01211.717.4±1.2
    3d[2D3/2]8p1/2 (J = 2)4.6606.4
    3d[2D5/2]8s (J = 2)4.69011.0
    3d[2D3/2]8p1/2 (J = 1)4.7543.9
    Blend4.693a4.789±0.01321.215.8±1.2
    3d[2D3/2]8p3/25.3385.216±0.02114.813.8±1.7
    3p[2P1/2]13d5.384a5.448±0.0327.211.5±1.4
    3p[2P1/2]13f5.838a5.747±0.02912.413.9±1.5
    3p[2P1/2]13l (lg)6.003a6.000±0.00640.444.7±1.9
    3d[2D5/2]8p1/2 (J = 2, 3)7.129a7.154±0.02214.612.5±1.3
    3p[2P3/2]12s (J = 1, 2)7.465a7.494±0.0952.06.8±2.3
    3d[2D5/2]8p3/2 (J = 2, 3, 4)7.705a7.767±0.03426.818.6±2.2
    4s[2S1/2]4f5/2 (J = 2)8.1298.161±0.02837.939.2±5.2
    3d[2D5/2]8p3/2 (J = 1)8.0632.3
    3p[2P3/2]12p1/28.2452.2
    3p[2P3/2]12p3/2 (J = 1, 2, 3)8.404a3.8
    3d[2D3/2]8d3/28.59612.7
    Blend8.466a8.391±0.04521.020.1±5.2
    4s[2S1/2]4f5/2(J = 3)8.8808.790±0.01053.958.2±1.3
    3d[2D3/2]8d5/28.813a21.1
    3p[2P3/2]12d9.404a8.9
    Blend8.988a9.143±0.01430.041.2±1.3
    4s[2S1/2]4f5/2 (J = 4)9.5779.546±0.01865.760.6±4.0
    4s[2S1/2]4f5/2 (J = 3)9.7379.842±0.02355.875.1±3.2
    3p[2P3/2]12l (lf )10.139a10.138±0.02077.567.0±3.8
    3d[2D3/2]8f10.721a10.694±0.04139.851.9±2.0
    3d[2D5/2]8d11.227a11.224±0.02333.158.3±2.8
    3d[2D3/2]8l (lg )11.313a11.504±0.00970.760.3±4.5
    3p[2P1/2]14d12.443a12.732±0.0443.510.1±1.7
    3p[2P1/2]14l (lf )12.907a13.101±0.01319.441.0±1.4
    3d[2D5/2]8f13.276a13.616±0.01825.439.2±1.8
    3d[2D5/2]8l (lg)13.770a13.964±0.00683.467.5±2.2
    4p[2P1/2]4d5/2 (J = 3)16.33712.3
    4p[2P1/2]4d5/2 (J = 2)16.5004.0
    Blend16.377a16.482±0.01316.314.1±1.0
    3p[2P3/2]13p17.491a17.36±0.142.42.0±1.0
    3p[2P1/2]15p17.601a17.74±0.120.83.0±0.8
    Blend17.517a17.579±0.0363.23.3±0.3
    3p[2P1/2]15d18.131a1.4
    3p[2P3/2]13d18.313a3.6
    Blend18.262a18.226±0.0575.17.2±1.4
    4p[2P1/2]4d5/2 (J = 1)18.4665.2
    3p[2P1/2]15l (lf)18.533a8.8
    Blend18.508a18.609±0.03114.021.6±1.0
    3p[2P3/2]13l (lf)18.930a18.976±0.00825.532.2±1.6
    4p[2P3/2]4d5/2 (J = 2)20.03820.162±0.0225.14.2±0.3
    4p[2P3/2]4d5/2 (J = 0)21.8021.7
    4p[2P3/2]4d5/2 (J = 1)22.0544.2
    Blend21.984a22.086±0.0255.95.1±0.3
    4p[2P3/2]4d5/2 (J = 3)22.4444.3
    4p[2P3/2]4d5/2 (J = 2)22.5025.4
    Blend22.476a22.614±0.0209.78.7±0.3
    3p[2P1/2]16l23.005a23.164±0.0189.57.3±0.3
    3p[2P3/2]14p24.715a1.4
    3p[2P3/2]14d25.371a2.2
    Blend25.111a25.480±0.0523.67.1±1.0
    3p[2P3/2]14l (lf)25.865a25.941±0.01320.721.2±1.0
    3p[2P1/2]17l26.821a26.917±0.0227.27.0±0.4
    3p[2P1/2]18l30.020a30.277±0.0246.16.8±0.3
    3p[2P3/2]15l31.348a31.695±0.01116.422.6±0.9
    4p[2P1/2]4f5/2 (J = 3)32.4241.6
    3p[2P1/2]19l32.739a7.5
    Blend32.683a32.804±0.0289.29.5±0.5
    a Weighted energy: $ {E}_{{\mathrm{d}}}= {\displaystyle\sum {E}_{{\mathrm{d}}}{S}_{{\mathrm{d}}}}\Big/{\displaystyle\sum {S}_{{\mathrm{d}}}} $
    DownLoad: CSV

    表 3  实验与FAC理论计算得到的复合速率系数导出的等离子体速率系数拟合参数, ciEi的单位分别为cm3·s–1与eV, 括号内的数字为10的幂

    Table 3.  Fitted coefficients for the plasma rate coefficients of DR experiment and FAC, the ci are in units of cm3·s–1, and the Ei are in eV. The numbers in the square brackets are power of 10.

    i 实验 FAC
    ci Ei ci Ei
    1 1.01[–1] 37.1 4.65[–2] 24.7
    2 2.28[–1] 63.9 2.07[–1] 53.4
    3 1.95[–3] 1.74 7.35[–2] 92.9
    4 3.30[–2] 121 1.05[–2] 6.15
    5 3.99[–2] 15.5 8.90[–4] 1.42
    6 4.34[–2] 9.07 1.57[–3] 2.36
    7 3.88[–3] 4.17 5.37[–2] 5.37
    DownLoad: CSV
  • [1]

    Gillaspy J D 2001 J. Phys. B: At. Mol. Opt. Phys. 34 R93Google Scholar

    [2]

    Kozlov M, Safronova M, López-Urrutia J C, Schmidt P 2018 Rev. Mod. Phys. 90 045005Google Scholar

    [3]

    Lindroth E, Danared H, Glans P, Pešić Z, Tokman M, Vikor G, Schuch R 2001 Phys. Rev. Lett. 86 5027Google Scholar

    [4]

    Brandau C, Kozhuharov C, Müller A, et al. 2003 Phys. Rev. Lett. 91 073202Google Scholar

    [5]

    Schuch R, Lindroth E, Madzunkov S, Fogle M, Mohamed T, Indelicato P 2005 Phys. Rev. Lett. 95 183003Google Scholar

    [6]

    Brandau C, Kozhuharov C, Harman Z A, et al. 2008 Phys. Rev. Lett. 100 073201Google Scholar

    [7]

    啜晓亚, 黄忠魁, 汶伟强, 等 2018 原子核物理评论 35 196Google Scholar

    Chuai X Y, Huang Z K, Wen W Q, et al. 2018 Nucl. Phys. Rev. 35 196Google Scholar

    [8]

    Kieslich S, Schippers S, Shi W, et al. 2004 Phys. Rev. A 70 042714Google Scholar

    [9]

    Budker G, Kiselev A, Konkov N, Naumov A, Niffontov V, Ostreiko G, Petrov V, Yudin L, Yasnov G 1965 V International Conference on High Energy Accelerators Proceedings Frascati, September 9–16, 1965 p455

    [10]

    Poth H 1990 Phys. Rep. 196 135Google Scholar

    [11]

    Mitchell J, Ng C, Forand J, Levac D, Mitchell R, Sen A, Miko D, McGowan J W 1983 Phys. Rev. Lett. 50 335Google Scholar

    [12]

    Dittner P, Datz S, Miller P, et al. 1983 Phys. Rev. Lett. 51 31Google Scholar

    [13]

    Müller A 2008 Advances In Atomic, Molecular, and Optical Physics (Academic Press) pp293–417

    [14]

    Schippers S 2015 Nucl. Instrum. Methods Phys. Res. , Sect. B 350 61Google Scholar

    [15]

    Huang Z K, Wen W Q, Xu X, et al. 2018 Astrophys. J. Suppl. Ser. 235 2Google Scholar

    [16]

    Khan N, Huang Z K, Wen W Q, Mahmood S, et al. 2018 Chin. Phys. C 42 064001Google Scholar

    [17]

    Wang S X, Xu X, Huang Z K, et al. 2018 Astrophys. J. 862 134Google Scholar

    [18]

    Wang S X, Huang Z K, Wen W Q, et al. 2019 Astron. Astrophys. 627 171Google Scholar

    [19]

    Huang Z K, Wang S X, Wen W Q, et al. 2020 X-Ray Spectrom. 49 155Google Scholar

    [20]

    Wen W Q, Huang Z K, Wang S X, et al. 2020 Astrophys. J. 905 36Google Scholar

    [21]

    Khan N, Huang Z K, Wen W Q, et al. 2022 J. Phys. B: At. Mol. Opt. Phys. 55 035001Google Scholar

    [22]

    Huang Z K, Wen W Q, Wang S X, et al. 2020 Phys. Rev. A 102 062823Google Scholar

    [23]

    Shevelko V P, Stöhlker T, Tawara H, Tolstikhina I Y, Weber G 2010 Nucl. Instrum. Methods Phys. Res., Sect. B 268 2611Google Scholar

    [24]

    Yan K, Zhou Y, Ma X, Tang M, Gao D, Zhao H, Huang Z, Wen W, Mao L 2023 Nucl. Instrum. Methods Phys. Res. , Sect. A 1046 167699Google Scholar

    [25]

    Skorobogatov D, Bryzgunov M, Kondaurov M, Putmakov A, Reva V, Repkov V 2019 Proceedings of the 12th Workshop on Beam Cooling and Related Topics Novosibirsk, Russia, September 24–27, 2019 pp86–88

    [26]

    Menz E B, Hahn C, Pfäfflein P, Weber G, Stöhlker T 2020 J. Phys. Conf. Ser. 1412 232006Google Scholar

    [27]

    Westman S, Kerek A, Klamra W, Norlin L O, Novak D 2002 Nucl. Instrum. Methods Phys. Res., Sect. A 481 655Google Scholar

    [28]

    Miersch G, Habs D, Kenntner J, Schwalm D, Wolf A 1996 Nucl. Instrum. Methods Phys. Res., Sect. A 369 277Google Scholar

    [29]

    Klepper O, Kozhuharov C 2003 Nucl. Instrum. Methods Phys. Res., Sect. B 204 553Google Scholar

    [30]

    Ye Y L, Di Z Y, Li Z H, Wang Q J, Zheng T, Chen T, Jiang D X, Ge Y C, Pang D Y, Li X Q 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 515 718Google Scholar

    [31]

    Kilgus G, Habs D, Schwalm D, Wolf A, Badnell N R, Muller A 1992 Phys. Rev. A 46 5730Google Scholar

    [32]

    Schippers S, Bartsch T, Brandau C, Müller A, Gwinner G, Wissler G, Beutelspacher M, Grieser M, Wolf A, Phaneuf R A 2000 Phys. Rev. A 62 022708Google Scholar

    [33]

    Danared H 1995 Phys. Scr. 59 121Google Scholar

    [34]

    Badnell N R 2011 Comput. Phys. Commun. 182 1528Google Scholar

    [35]

    Badnell N 2006 Astrophys. J. 651 L73Google Scholar

    [36]

    Gu M F 2008 Can. J. Phys. 86 675Google Scholar

    [37]

    Gu M F 2003 Astrophys. J. 590 1131Google Scholar

    [38]

    Schippers S, Müller A, Gwinner G, Linkemann J, Saghiri A, Wolf A 2001 Astrophys. J. 555 1027Google Scholar

    [39]

    Schippers S, Schnell M, Brandau C, Kieslich S, Müller A, Wolf A 2004 Astron. Astrophys. 421 1185Google Scholar

  • [1] Huang Hou-Ke, Wen Wei-Qiang, Huang Zhong-Kui, Wang Shu-Xing, Tang Mei-Tang, Li Jie, Mao Li-Jun, Yuan Yang, Wan Meng-Yu, Liu Chang, Wang Han-Bin, Zhou Xiao-Peng, Zhao Dong-Mei, Yan Kai-Min, Zhou Yun-Bin, Yuan You-Jin, Yang Jian-Cheng, Zhang Shao-Feng, Zhu Lin-Fan, Ma Xin-Wen. Precision spectroscopy of dielectronic recombination experiments for highly charged ions at large facility HIAF: a simulation study. Acta Physica Sinica, 2025, 74(4): . doi: 10.7498/aps.74.20241589
    [2] Sun Tang-You, Yu Yan-Li, Qin Zu-Bin, Chen Zan-Hui, Chen Jun-Li, Jiang Yue, Zhang Fa-Bi. Multi-band response Cs2AgBiBr6 double perovskite photodetector based on TiO2 nanopillars. Acta Physica Sinica, 2024, 73(7): 078502. doi: 10.7498/aps.73.20231919
    [3] Li Hang, Chen Ping, Tian Jin-Shou, Xue Yan-Hua, Wang Jun-Feng, Gou Yong-Sheng, Zhang Min-Rui, He Kai, Xu Xiang-Yan, Sai Xiao-Feng, Li Ya-Hui, Liu Bai-Yu, Wang Xiang-Lin, Xin Li-Wei, Gao Gui-Long, Wang Tao, Wang Xing, Zhao Wei. High time-resolution detector based on THz pulse accelerating and scanning electron beam. Acta Physica Sinica, 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [4] Wen Zhi-Wen, Qi Hui-Rong, Zhang Yu-Lian, Wang Hai-Yun, Liu Ling, Wang Yan-Feng, Zhang Jian, Li Yu-Hong, Sun Zhi-Jia. Development of high-pressure multi-wire proportional chamber neutron detector for the China Spallation Neutron Source multipurpose reflectometer. Acta Physica Sinica, 2018, 67(7): 072901. doi: 10.7498/aps.67.20172618
    [5] Wen Zhi-Wen, Qi Hui-Rong, Wang Yan-Feng, Sun Zhi-Jia, Zhang Yu-Lian, Wang Hai-Yun, Zhang Jian, Ouyang Qun, Chen Yuan-Bo, Li Yu-Hong. Readout method for two-dimensional multi-wire proportional chamber. Acta Physica Sinica, 2017, 66(7): 072901. doi: 10.7498/aps.66.072901
    [6] Fu Yan-Biao, Wang Xu-Dong, Su Mao-Gen, Dong Chen-Zhong. Theoretical studies of dielectronic recombination for Au34+ ions. Acta Physica Sinica, 2016, 65(3): 033401. doi: 10.7498/aps.65.033401
    [7] Wen Zhi-Wen, Qi Hui-Rong, Dai Hong-Liang, Zhang Yu-Lian, Zhang Jian, Wei Kun, Ouyang Qun, Shao Jian-Xiong. Modified method for diffraction aberration of one-dimensional wire chamber. Acta Physica Sinica, 2015, 64(8): 082901. doi: 10.7498/aps.64.082901
    [8] Fan Sheng-Nan, Wang Bo, Qi Hui-Rong, Liu Mei, Zhang Yu-Lian, Zhang Jian, Liu Rong-Guang, Yi Fu-Ting, Ouyang Qun, Chen Yuan-Bo. Study on the performance of a high-gain gas electron multiplier-MicroMegas chamber. Acta Physica Sinica, 2013, 62(12): 122901. doi: 10.7498/aps.62.122901
    [9] Yang Jian-Hui, Fan Qiang, Zhang Jian-Ping. The study of dielectronic recombination (DR) rate coefficient for ground state of Ne-like isoelectronic sequence ions. Acta Physica Sinica, 2012, 61(19): 193101. doi: 10.7498/aps.61.193101
    [10] Wang Wei, Jiang Gang. Study on rate coefficient of dielectronic recombination in dense plasma based on doubly excited state. Acta Physica Sinica, 2010, 59(11): 7815-7823. doi: 10.7498/aps.59.7815
    [11] Shi Ying-Long, Dong Chen-Zhong, Zhang Deng-Hong, Fu Yan-Biao. Theoretical study on the dielectronic recombination of highly charged mercury and uranium ions. Acta Physica Sinica, 2008, 57(1): 88-95. doi: 10.7498/aps.57.88
    [12] Zhang Deng-Hong, Dong Chen-Zhong, Xie Lu-You, Ding Xiao-Bin, Fu Yan-Biao. Relativistic theoretical study on the KLL dielectronic recombination of helium-like ions. Acta Physica Sinica, 2006, 55(1): 112-118. doi: 10.7498/aps.55.112
    [13] Dong Chen-Zhong, Fu Yan-Biao. Theoretical studies of dielectronic recombination and resonant transfer excitation for highly ionized Cu18+ ions. Acta Physica Sinica, 2006, 55(1): 107-111. doi: 10.7498/aps.55.107
    [14] Yi You-Gen, Zheng Zhi-Jian, Yan Jun, Li Ping, Fang Quan-Yu, Qiu Yu-Bo. Dielectronic recombination from Fe like Au^53+ to Ga like Au^47+ ions*. Acta Physica Sinica, 2002, 51(12): 2740-2744. doi: 10.7498/aps.51.2740
    [15] Sheng Yong, Jiang Gang, Zhu Zheng-He. . Acta Physica Sinica, 2002, 51(3): 501-505. doi: 10.7498/aps.51.501
    [16] Jiao Rong-Zhen, Cheng Xin-Lu, Yang Xiang-Dong, Zhu Jun. . Acta Physica Sinica, 2002, 51(8): 1755-1758. doi: 10.7498/aps.51.1755
    [17] YANG ZHEN-HUA, WU YU-PU. ELECTRON BEAM ENERGY MODULATION IN SR-FREE ELECTRON LASER. Acta Physica Sinica, 1997, 46(2): 279-286. doi: 10.7498/aps.46.279
    [18] Chen Shi-Gang, Wang Wen-Jie, Wang Guang-Rui. . Acta Physica Sinica, 1995, 44(6): 862-871. doi: 10.7498/aps.44.862
    [19] WU GUN-HUNG, WANG YUN-YU, TANG XIAO-WEI. MEASUREMENT OF 3γ ANNIHILATION OF POSITRON USING Ge (Li) DETECTOR. Acta Physica Sinica, 1983, 32(3): 417-422. doi: 10.7498/aps.32.417
    [20] LI JIA-MING. A MULTICHANNEL THEORY OF INVERSE TWO-ELECTRON RECOMBINATION. Acta Physica Sinica, 1983, 32(1): 84-91. doi: 10.7498/aps.32.84
Metrics
  • Abstract views:  2816
  • PDF Downloads:  187
  • Cited By: 0
Publishing process
  • Received Date:  31 January 2024
  • Accepted Date:  03 April 2024
  • Available Online:  08 May 2024
  • Published Online:  20 June 2024

/

返回文章
返回