Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical Study on Charge-State Evolution of Carbon Ions Penetrating Hydrogen Plasma

ZHANG Chongrui HE Wenliang CAO Shiquan Xie Luyou Dong Chenzhong

Citation:

Theoretical Study on Charge-State Evolution of Carbon Ions Penetrating Hydrogen Plasma

ZHANG Chongrui, HE Wenliang, CAO Shiquan, Xie Luyou, Dong Chenzhong
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • This paper systematically investigates the charge state evolution behavior of carbon ions interacting with hydrogen plasma based on a cross-sectional model. First, the study explores the influence of introducing a "shifted" Maxwellian velocity distribution on the dielectronic recombination rate coefficients within the range of carbon ion incident energies from 1 keV/u to 100 MeV/u and hydrogen plasma electron temperatures of kTe=1-1000eV. For the first time, rate coefficient data for this system are provided. Building on this, the research specifically solves the equilibrium rate equations encompassing various ionization and recombination processes for projectile carbon ions with an energy of 0.5 MeV/u, plasma electron temperatures of kTe=3eV and 8eV and electron densities from 1018 to 1020cm-3. The results present the evolution of non-equilibrium and equilibrium charge state abundances of carbon ions penetrating hydrogen plasma as a function of plasma thickness, revealing the regulatory mechanisms of plasma conditions (temperature and density), projectile ion energy, and initial charge state on the charge state evolution of the ions. Furthermore, by comparing the dynamic behaviors of carbon ions in hydrogen plasma and neutral gas (hydrogen), the unique effects of the plasma environment on ion charge exchange are elucidated. The mean equilibrium charge state of projectile ions exhibits a positive correlation with electron temperature but a negative correlation with electron density. Of particular significance, the calculated equilibrium charge states in hydrogen gas targets are markedly lower than those in plasma environments. As the initial charge state of projectile ions approaches its equilibrium value, the equilibrium thicknesses for all charge states demonstrate a decreasing trend, accompanied by a corresponding reduction in the mean equilibrium thickness. This phenomenon has been consistently verified in both plasma and gas targets, with the mean equilibrium thickness values in gas targets being significantly smaller than those in plasma environments. Most importantly, when the initial charge state of projectile ions exceeds the equilibrium value, these ions display more pronounced energy loss characteristics in non-equilibrium regions. This study will serve as an important reference for research on the dynamic evolution and energy transport characteristics of ion-plasma interactions in the field of high-energy-density physics.
  • [1]

    Bohr N 1913Phil. Mag 25 10

    [2]

    Bohr N 1915Phil. Mag 30 581

    [3]

    Rutherford E 1911Philos. Mag 21 669

    [4]

    Bethe H A 1930Ann. Phys 5 325

    [5]

    Bloch F 1933Ann. Phys 16 287

    [6]

    Olsen J N, Mehlhorn T A, Maenchen J, Johnson D J 1985J. Appl. Phys 582958

    [7]

    Young F C, Mosher D, Stephanakis S J, Goldstein Shyke A 1982Phys. Rev. Lett 49 549

    [8]

    Mehlhorn D H H, Weyrich K, Wahl H, Gardés D, Bimbot R, Fleurier C 1990Phys. Rev. A 42 2313

    [9]

    Koshkarev D G 2002Laser Part. Beams 20 595

    [10]

    Dietrich K G, Hoffmann D H H, Boggasch E, Jacoby J, Wahl H, Elfers M, Haas C R, Dubenkov V P, Golubev A A 1992Phys. Rev. Lett 69 3623

    [11]

    Gardes D, Bimbot R, Rivet M F, Servajean A, Fleurier A, Hong D, Deutsch C, Maynard G 1990Laser Part. Beam 8 575

    [12]

    Lindhard J, Winther A 1964Mat.-Fys. Medd. K. Dan. Vidensk. Selsk 34 1

    [13]

    Andersen H H, Ziegler J F 1977Stopping and Ranges of Ions in Matter (Elmsford, NY:Pergamon)

    [14]

    Sigmund P 2006Particle Penetration and Radiation Effects (Berlin:Springer)

    [15]

    Nardi E, Zinamon Z 1982Phys. Rev. Lett 49 1251

    [16]

    Peter T, Meyer-ter-Vehn J 1991Phys. Rev. A 43 2015

    [17]

    Scheidenberger C, Stoehlker T, Meyerhof W E, Geissel H, Mokler P H, Blank B 1998Nucl. Instrum. Methods Phys. Res. B 142 441

    [18]

    Rozet J P, Stephan C, Vernhet D 1996Nucl. Instr. Methods B 107 67

    [19]

    Trubnikov B 1965Rev. Mod. Plasma Phys 1 105

    [20]

    Skupsky S 1977 Phys. Rev. A 16 727

    [21]

    Li C K, Petrasso R D 1993Phys. Rev. Lett 70 3059

    [22]

    Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972Nature 239139

    [23]

    Kawata S, Karino T, Ogoyski A I 2016Matter Radiat. Extrem 1 89

    [24]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994Phys. Plasmas 1 1626

    [25]

    Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro E, Bulanov S V, Campbell E M, Perry M D, Powell H 2001Phys. Rev. Lett 86 436

    [26]

    Sharkov B Y, Hoffmann D H H, Golubev A A, Zhao Y T 2016Matter Radiat. Extrem 1 28

    [27]

    Cheng R, Zhang S, Shen G D, Chen Y H, Zhang Y S, Chen L W, Zhang Z M, Zhao Q T, Yang J C, Wang Y Y, Lei Y, Lin P, Yang J, Yang L, Ma X W, Xiao G Q, Zhao H W, Zhan W L 2020Sci. Sin.-Phys. Mech. Astron 50 155(in Chinese)[程锐,张晟,申国栋,陈燕红,张延师,陈良文,张子民,赵全堂,杨建成,王瑜玉,雷瑜,林平,杨杰,杨磊,马新文,肖国青,赵红卫,詹文龙2020中国科学:物理学力学天文学50155]

    [28]

    Tolstikhina I Y, Imai M, Winckler N, Shevelko V P 2018Basic Atomic Interactions of Accelerated Heavy Ions in Matter (Berlin:Springer-Verlag GmbH)

    [29]

    Tolstikhina I Y, Andreev S N, Vainshtein L A, Shevelko V P 2020J. Quant. Spectrosc. Radiat. Transfer 246106944

    [30]

    Weyrich K, Hoffmann D H H, Jacoby J, Wahl H, Noll R, Haas R, Kunze H, Bimbot R, Gardes D, Rivet M F, Deutsch C, Fleurier C 1990Nucl. Instrum. Methods Phys. Res. Sect. A 278 52

    [31]

    Gardés D, Servajean A, Jubica B, Fleurier C, Hong D, Deutsch C, Maynard D 1992Phys. Rev. A 46 5101

    [32]

    Gardés D, Bimbot R, Rivet M F, Servajean A, Fleurier C, Hong D, Deutsch C, Maynard G 1992Particle Accelerators 37 361

    [33]

    Couillaud C, Deicas R, Nardin P, Beuve M A, Guihaumé J M, Renaud R, Cukier M, Deutsch C, Maynard G 1994Phys. Rev. E 49 1545

    [34]

    Jacoby J, Hoffmann D H H, Laux W, Muller R W, Wahl H, Weyrich K, Boggasch E, Heimrich B, Stockl C, Wetzler C, Miyamoto C 1995Phys. Rev. Lett 74 1550

    [35]

    Kojima M, Mitomo M, Sasaki T, Hasegawa J, Ogawa M 2002Laser Part. Beams 20 475

    [36]

    Skobelev N K, Kalpakchieva R, Astabatyan R A, Vincour J, Kulko A A, Lobastov S P, Lukyanov S M, Markaryan E R, Maslov V A, Sobolev Y H, Ugryumov V Y 2005Nucl. Instrum. Methods Phys. Res. Sect. B 227 471

    [37]

    Frank A, Blazevicé, Bagnoud V, Basko M M, Borner M, Cayzac W, Kraus D, Hessling T, Hoffmann D H H, Ortner A, Otten A, Pelka A, Pepler D, Schumacher D, Tauschwitz A, Roth M 2013Phys. Rev. Lett 110 115001

    [38]

    Gauthier M, Chen S N, Levy A, Audebert P, Blancard C, Ceccotti T, Cerchez M, Doria D, Floquet V, Lamour E, Peth C, Romagnani L, Rozet J P, Scheinder M, Shepherd R, Toncian T, Vernhet D, Willi O, Borghesi M, Faussurier G, Fuchs J 2013Phys. Rev. Lett 110 135003

    [39]

    Nardi E, Zinamon Z 1982Phys. Rev. Lett 49 1251

    [40]

    Peter T, Arnold R, Meyer-ter-Vehn J 1986Phys. Rev. Lett 57 1859

    [41]

    Frank A, Blažević, A, Grande P L, Harres K, Heßling T, Hoffmann D H H, Knobloch-Maas R, Kuznetsov P G, Nürnberg F, Pelka A, Schaumann G, Schiwietz G, Schökel A, Schollmeier M, Schumacher D, Schütrumpf J, Vatulin V V, Vinokurov O A, Roth M 2010Phys. Rev. E 81 115001

    [42]

    Ortner A, Frank A, Blažević A, Roth M 2015Phys. Rev. E 91 023104

    [43]

    Cayzac W, Bagnoud V, Basko M M, Blažević A, Frank A, Gericke D O, Hallo L, Malka G, Ortner A, Tauschwitz A, Vorberger J, Roth M 2015Phys. Rev. E 92 053109

    [44]

    Betz H 1972Rev. Mod. Phys 44 465

    [45]

    Kreussler S, Varelas C, Brandt W 1981 Phys. Rev. B 2382

    [46]

    Gus'kov S Yu, Zmitrenko N V, Ⅱ' in D V, Levkovskii A A, Rozanov V B, Sherman V E 2010Plasma Phys. Rep 35 709

    [47]

    Morales R, Barriga Carrasco M D, Casas D 2017Phys. Plasmas 24042703

    [48]

    Shevelko V P, Andreev S N, Tolstikhina I Y 2021Nucl. Instrum. Methods Phys. Res. Sect. B 502 37

    [49]

    Tolstikhina I Y, Shevelko V P 2023Matter Radiat. Extrem 8 23

    [50]

    Novikov N V, Teplova Ya A 2021J.Surf.Invest.:X-ray,Synch.Neut.Tech 15 248

    [51]

    Betz H D 1983Heavy Ion Charge States (New York:Academic Press)

    [52]

    Chung H K, Chen M H, Morgan W L, Ralchenko Y, Lee R W 2005High Energy Density Phys 1 3

    [53]

    Gu M F, 2008Can. J. Phys 86 675

  • [1] CHENG Yu, REN Jieru, MA Bubo, LIU Yun, ZHAO Ziqian, WEI Wenqing, H. H Hoffmann, DENG Zhigang, QI Wei, ZHOU Weimin, CHENG Rui, LI Zhongliang, SONG Lei, LI Yuan, ZHAO Yongtao. Charge transfer process of laser-accelerated low-energy carbon ion beams in porous CHO foams. Acta Physica Sinica, doi: 10.7498/aps.74.20250634
    [2] LIANG Yaqiong, LIANG Guiyun. Solar wind charge-exchange X-ray emission factor based on ACE observation data. Acta Physica Sinica, doi: 10.7498/aps.74.20241603
    [3] HUANG Houke, WEN Weiqiang, HUANG Zhongkui, WANG Shuxing, TANG Meitang, LI Jie, MAO Lijun, YUAN Yang, WAN Mengyu, LIU Chang, WANG Hanbing, ZHOU Xiaopeng, ZHAO Dongmei, YAN Kaiming, ZHOU Yunbin, YUAN Youjin, YANG Jiancheng, ZHANG Shaofeng, ZHU Linfan, MA Xinwen. Simulation study of precision spectroscopy of dielectronic recombination for highly charged heavy ions at HIAF. Acta Physica Sinica, doi: 10.7498/aps.74.20241589
    [4] Shao Lin, Huang Zhong-Kui, Wen Wei-Qiang, Wang Shu-Xing, Huang Hou-Ke, Ma Wan-Lu, Liu Chang, Wang Han-Bing, Chen Dong-Yang, Liu Xin, Zhou Xiao-Peng, Zhao Dong-Mei, Zhang Shao-Feng, Zhu Lin-Fan, Ma Xin-Wen. Dielectronic recombination experiment of Na-like Kr25+ at heavy ion storage ring CSRe. Acta Physica Sinica, doi: 10.7498/aps.73.20240211
    [5] Zhao Xiao-An, Xu Sheng-Hua, Zhou Hong-Wei, Sun Zhi-Wei. Effect of electrolyte concentration on effective surface charge of colloidal particles. Acta Physica Sinica, doi: 10.7498/aps.70.20201472
    [6] Xu Jia-Wei, Xu Chuan-Xi, Zhang Rui-Tian, Zhu Xiao-Long, Feng Wen-Tian, Zhao Dong-Mei, Liang Gui-Yun, Guo Da-Long, Gao Yong, Zhang Shao-Feng, Su Mao-Gen, Ma Xin-Wen. Experimental measurement of state-selective charge exchange and test of astrophysics soft X-ray emission model. Acta Physica Sinica, doi: 10.7498/aps.70.20201685
    [7] Wang Lin-Wei, Xu Sheng-Hua, Zhou Hong-Wei, Sun Zhi-Wei, Ouyang Wen-Ze, Xu Feng. Theoretical improvement on the determination of effective elasticity charges for charged colloidal particles. Acta Physica Sinica, doi: 10.7498/aps.66.066102
    [8] Zhou Xian-Ming, Zhao Yong-Tao, Cheng Rui, Lei Yu, Wang Yu-Yu, Ren Jie-Ru, Liu Shi-Dong, Mei Ce-Xiang, Chen Xi-Meng, Xiao Guo-Qing. Vanadium K-shell X-ray emission induced by xenon ions at near the Bohr velocity. Acta Physica Sinica, doi: 10.7498/aps.65.027901
    [9] Fu Yan-Biao, Wang Xu-Dong, Su Mao-Gen, Dong Chen-Zhong. Theoretical studies of dielectronic recombination for Au34+ ions. Acta Physica Sinica, doi: 10.7498/aps.65.033401
    [10] Yang Jian-Hui, Fan Qiang, Zhang Jian-Ping. The study of dielectronic recombination (DR) rate coefficient for ground state of Ne-like isoelectronic sequence ions. Acta Physica Sinica, doi: 10.7498/aps.61.193101
    [11] Wang Wei, Jiang Gang. Study on rate coefficient of dielectronic recombination in dense plasma based on doubly excited state. Acta Physica Sinica, doi: 10.7498/aps.59.7815
    [12] Shi Ying-Long, Dong Chen-Zhong, Zhang Deng-Hong, Fu Yan-Biao. Theoretical study on the dielectronic recombination of highly charged mercury and uranium ions. Acta Physica Sinica, doi: 10.7498/aps.57.88
    [13] Zhang Deng-Hong, Dong Chen-Zhong, Xie Lu-You, Ding Xiao-Bin, Fu Yan-Biao. Relativistic theoretical study on the KLL dielectronic recombination of helium-like ions. Acta Physica Sinica, doi: 10.7498/aps.55.112
    [14] Dong Chen-Zhong, Fu Yan-Biao. Theoretical studies of dielectronic recombination and resonant transfer excitation for highly ionized Cu18+ ions. Acta Physica Sinica, doi: 10.7498/aps.55.107
    [15] Yang Chao-Wen, Miao Jing-Wei, Wang Guang-Lin, Liu Xiao-Dong, Shi Mian-Gong. The electron exchange of MeV hydrogen micro-cluster ions with solids. Acta Physica Sinica, doi: 10.7498/aps.55.5810
    [16] Yang Bai-Fang, Miao Jing-Wei, Yang Chao-Wen, Shi Mian-Gong, Tang A-You, Liu Xiao-Dong. . Acta Physica Sinica, doi: 10.7498/aps.51.55
    [17] Yi You-Gen, Zheng Zhi-Jian, Yan Jun, Li Ping, Fang Quan-Yu, Qiu Yu-Bo. Dielectronic recombination from Fe like Au^53+ to Ga like Au^47+ ions*. Acta Physica Sinica, doi: 10.7498/aps.51.2740
    [18] Sheng Yong, Jiang Gang, Zhu Zheng-He. . Acta Physica Sinica, doi: 10.7498/aps.51.501
    [19] Jiao Rong-Zhen, Cheng Xin-Lu, Yang Xiang-Dong, Zhu Jun. . Acta Physica Sinica, doi: 10.7498/aps.51.1755
    [20] WANG YOU-NIAN, MA TENG-CAI, GONG YE. ELECTRONIC STOPPING POWER AND EFFECTIVE CHARGE OF HEAVY ION-BEAM IN HOT TARGETS. Acta Physica Sinica, doi: 10.7498/aps.42.631
Metrics
  • Abstract views:  40
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  24 July 2025
  • /

    返回文章
    返回