-
This paper systematically investigates the charge state evolution behavior of carbon ions interacting with hydrogen plasma based on a cross-sectional model. First, the study explores the influence of introducing a "shifted" Maxwellian velocity distribution on the dielectronic recombination rate coefficients within the range of carbon ion incident energies from 1 keV/u to 100 MeV/u and hydrogen plasma electron temperatures of kTe=1-1000eV. For the first time, rate coefficient data for this system are provided. Building on this, the research specifically solves the equilibrium rate equations encompassing various ionization and recombination processes for projectile carbon ions with an energy of 0.5 MeV/u, plasma electron temperatures of kTe=3eV and 8eV and electron densities from 1018 to 1020cm-3. The results present the evolution of non-equilibrium and equilibrium charge state abundances of carbon ions penetrating hydrogen plasma as a function of plasma thickness, revealing the regulatory mechanisms of plasma conditions (temperature and density), projectile ion energy, and initial charge state on the charge state evolution of the ions. Furthermore, by comparing the dynamic behaviors of carbon ions in hydrogen plasma and neutral gas (hydrogen), the unique effects of the plasma environment on ion charge exchange are elucidated. The mean equilibrium charge state of projectile ions exhibits a positive correlation with electron temperature but a negative correlation with electron density. Of particular significance, the calculated equilibrium charge states in hydrogen gas targets are markedly lower than those in plasma environments. As the initial charge state of projectile ions approaches its equilibrium value, the equilibrium thicknesses for all charge states demonstrate a decreasing trend, accompanied by a corresponding reduction in the mean equilibrium thickness. This phenomenon has been consistently verified in both plasma and gas targets, with the mean equilibrium thickness values in gas targets being significantly smaller than those in plasma environments. Most importantly, when the initial charge state of projectile ions exceeds the equilibrium value, these ions display more pronounced energy loss characteristics in non-equilibrium regions. This study will serve as an important reference for research on the dynamic evolution and energy transport characteristics of ion-plasma interactions in the field of high-energy-density physics.
-
Keywords:
- Effective charge /
- Charge exchange /
- Dielectronic recombination /
- Charge-state distribution
-
[1] Bohr N 1913Phil. Mag 25 10
[2] Bohr N 1915Phil. Mag 30 581
[3] Rutherford E 1911Philos. Mag 21 669
[4] Bethe H A 1930Ann. Phys 5 325
[5] Bloch F 1933Ann. Phys 16 287
[6] Olsen J N, Mehlhorn T A, Maenchen J, Johnson D J 1985J. Appl. Phys 582958
[7] Young F C, Mosher D, Stephanakis S J, Goldstein Shyke A 1982Phys. Rev. Lett 49 549
[8] Mehlhorn D H H, Weyrich K, Wahl H, Gardés D, Bimbot R, Fleurier C 1990Phys. Rev. A 42 2313
[9] Koshkarev D G 2002Laser Part. Beams 20 595
[10] Dietrich K G, Hoffmann D H H, Boggasch E, Jacoby J, Wahl H, Elfers M, Haas C R, Dubenkov V P, Golubev A A 1992Phys. Rev. Lett 69 3623
[11] Gardes D, Bimbot R, Rivet M F, Servajean A, Fleurier A, Hong D, Deutsch C, Maynard G 1990Laser Part. Beam 8 575
[12] Lindhard J, Winther A 1964Mat.-Fys. Medd. K. Dan. Vidensk. Selsk 34 1
[13] Andersen H H, Ziegler J F 1977Stopping and Ranges of Ions in Matter (Elmsford, NY:Pergamon)
[14] Sigmund P 2006Particle Penetration and Radiation Effects (Berlin:Springer)
[15] Nardi E, Zinamon Z 1982Phys. Rev. Lett 49 1251
[16] Peter T, Meyer-ter-Vehn J 1991Phys. Rev. A 43 2015
[17] Scheidenberger C, Stoehlker T, Meyerhof W E, Geissel H, Mokler P H, Blank B 1998Nucl. Instrum. Methods Phys. Res. B 142 441
[18] Rozet J P, Stephan C, Vernhet D 1996Nucl. Instr. Methods B 107 67
[19] Trubnikov B 1965Rev. Mod. Plasma Phys 1 105
[20] Skupsky S 1977 Phys. Rev. A 16 727
[21] Li C K, Petrasso R D 1993Phys. Rev. Lett 70 3059
[22] Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972Nature 239139
[23] Kawata S, Karino T, Ogoyski A I 2016Matter Radiat. Extrem 1 89
[24] Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994Phys. Plasmas 1 1626
[25] Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro E, Bulanov S V, Campbell E M, Perry M D, Powell H 2001Phys. Rev. Lett 86 436
[26] Sharkov B Y, Hoffmann D H H, Golubev A A, Zhao Y T 2016Matter Radiat. Extrem 1 28
[27] Cheng R, Zhang S, Shen G D, Chen Y H, Zhang Y S, Chen L W, Zhang Z M, Zhao Q T, Yang J C, Wang Y Y, Lei Y, Lin P, Yang J, Yang L, Ma X W, Xiao G Q, Zhao H W, Zhan W L 2020Sci. Sin.-Phys. Mech. Astron 50 155(in Chinese)[程锐,张晟,申国栋,陈燕红,张延师,陈良文,张子民,赵全堂,杨建成,王瑜玉,雷瑜,林平,杨杰,杨磊,马新文,肖国青,赵红卫,詹文龙2020中国科学:物理学力学天文学50155]
[28] Tolstikhina I Y, Imai M, Winckler N, Shevelko V P 2018Basic Atomic Interactions of Accelerated Heavy Ions in Matter (Berlin:Springer-Verlag GmbH)
[29] Tolstikhina I Y, Andreev S N, Vainshtein L A, Shevelko V P 2020J. Quant. Spectrosc. Radiat. Transfer 246106944
[30] Weyrich K, Hoffmann D H H, Jacoby J, Wahl H, Noll R, Haas R, Kunze H, Bimbot R, Gardes D, Rivet M F, Deutsch C, Fleurier C 1990Nucl. Instrum. Methods Phys. Res. Sect. A 278 52
[31] Gardés D, Servajean A, Jubica B, Fleurier C, Hong D, Deutsch C, Maynard D 1992Phys. Rev. A 46 5101
[32] Gardés D, Bimbot R, Rivet M F, Servajean A, Fleurier C, Hong D, Deutsch C, Maynard G 1992Particle Accelerators 37 361
[33] Couillaud C, Deicas R, Nardin P, Beuve M A, Guihaumé J M, Renaud R, Cukier M, Deutsch C, Maynard G 1994Phys. Rev. E 49 1545
[34] Jacoby J, Hoffmann D H H, Laux W, Muller R W, Wahl H, Weyrich K, Boggasch E, Heimrich B, Stockl C, Wetzler C, Miyamoto C 1995Phys. Rev. Lett 74 1550
[35] Kojima M, Mitomo M, Sasaki T, Hasegawa J, Ogawa M 2002Laser Part. Beams 20 475
[36] Skobelev N K, Kalpakchieva R, Astabatyan R A, Vincour J, Kulko A A, Lobastov S P, Lukyanov S M, Markaryan E R, Maslov V A, Sobolev Y H, Ugryumov V Y 2005Nucl. Instrum. Methods Phys. Res. Sect. B 227 471
[37] Frank A, Blazevicé, Bagnoud V, Basko M M, Borner M, Cayzac W, Kraus D, Hessling T, Hoffmann D H H, Ortner A, Otten A, Pelka A, Pepler D, Schumacher D, Tauschwitz A, Roth M 2013Phys. Rev. Lett 110 115001
[38] Gauthier M, Chen S N, Levy A, Audebert P, Blancard C, Ceccotti T, Cerchez M, Doria D, Floquet V, Lamour E, Peth C, Romagnani L, Rozet J P, Scheinder M, Shepherd R, Toncian T, Vernhet D, Willi O, Borghesi M, Faussurier G, Fuchs J 2013Phys. Rev. Lett 110 135003
[39] Nardi E, Zinamon Z 1982Phys. Rev. Lett 49 1251
[40] Peter T, Arnold R, Meyer-ter-Vehn J 1986Phys. Rev. Lett 57 1859
[41] Frank A, Blažević, A, Grande P L, Harres K, Heßling T, Hoffmann D H H, Knobloch-Maas R, Kuznetsov P G, Nürnberg F, Pelka A, Schaumann G, Schiwietz G, Schökel A, Schollmeier M, Schumacher D, Schütrumpf J, Vatulin V V, Vinokurov O A, Roth M 2010Phys. Rev. E 81 115001
[42] Ortner A, Frank A, Blažević A, Roth M 2015Phys. Rev. E 91 023104
[43] Cayzac W, Bagnoud V, Basko M M, Blažević A, Frank A, Gericke D O, Hallo L, Malka G, Ortner A, Tauschwitz A, Vorberger J, Roth M 2015Phys. Rev. E 92 053109
[44] Betz H 1972Rev. Mod. Phys 44 465
[45] Kreussler S, Varelas C, Brandt W 1981 Phys. Rev. B 2382
[46] Gus'kov S Yu, Zmitrenko N V, Ⅱ' in D V, Levkovskii A A, Rozanov V B, Sherman V E 2010Plasma Phys. Rep 35 709
[47] Morales R, Barriga Carrasco M D, Casas D 2017Phys. Plasmas 24042703
[48] Shevelko V P, Andreev S N, Tolstikhina I Y 2021Nucl. Instrum. Methods Phys. Res. Sect. B 502 37
[49] Tolstikhina I Y, Shevelko V P 2023Matter Radiat. Extrem 8 23
[50] Novikov N V, Teplova Ya A 2021J.Surf.Invest.:X-ray,Synch.Neut.Tech 15 248
[51] Betz H D 1983Heavy Ion Charge States (New York:Academic Press)
[52] Chung H K, Chen M H, Morgan W L, Ralchenko Y, Lee R W 2005High Energy Density Phys 1 3
[53] Gu M F, 2008Can. J. Phys 86 675
Metrics
- Abstract views: 40
- PDF Downloads: 2
- Cited By: 0