Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Solar wind charge-exchange X-ray emission factor based on ACE observation data

LIANG Yaqiong LIANG Guiyun

Citation:

Solar wind charge-exchange X-ray emission factor based on ACE observation data

LIANG Yaqiong, LIANG Guiyun
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • This study aims to quantify the solar wind charge-exchange (SWCX) X-ray emission factors (denoted as α-value) and their dependence on solar wind parameters, solar activity cycles, and solar wind origins. By analyzing 13 years (1998–2011) of in situ measurements from the Advanced Composition Explorer (ACE) spacecraft, we investigate the statistical correlations between solar wind ionization states, elemental abundances (particularly oxygen), and bulk plasma parameters (proton speed, density). The derived α-values are critical for interpreting the data from Solar wind and Magnetosphere Interaction Linker Explorer (SMILE), and disentangling SWCX foreground emissions from diffuse astrophysical X-ray sources observed by Einstein Probe (EP) and proposed DIffuse X-ray Explorer (DIXE) payload on Chinese Space Station. This work analyzed high-resolution solar wind ion composition data and plasma parameters from ACE. Events were categorized by solar wind origin (coronal holes, streamers, interplanetary coronal mass ejections (ICMEs)) and solar cycle phase (minimum vs maximum). α-value, defined as the total soft X-ray photon emission cross section per solar wind proton, was computed using an updated charge-exchange model incorporating state-resolved cross-sections for highly charged ions. The model accounts for velocity-dependent cross-section of solar wind-neutral interaction. Statistical method and bin-averaging techniques were applied to extract correlations between α, solar wind speed (vsw), proton density (np), and oxygen abundance. The main results are:1. Ionization state dynamics: A strong anti-correlation exists between solar wind ionization degree and bulk speed: high-speed wind (>500 km/s) exhibit lower ionization states compared to slow wind (<400 km/s).2. Elemental abundance trends: Oxygen abundance ([O/H]) anti-correlates with np: denser solar wind plasmas (np > 13 cm–3) exhibit 30–50% lower [O/H], suggesting fractionation processes during plasma acceleration. No significant speed dependence of [O/H] was observed, contrasting with earlier studies.3. Emission factor (α-value) behavior: α-value decreases rapidly with increasing np and stabilizes for np > 13 cm−3. Conversely, α-value increases gradually with vsw up to 430 km/s, beyond which it plateaus (Fig. 5). ICME-associated α exceeds streamer and coronal hole values by 35–60%, attributed to higher averaged ionic state in transient ejecta. Solar maximum α (2000–2002) is 1.3–2.7 times higher than solar minimum (2008–2010), reflecting cycle-dependent ion composition changes.By bridging in situ solar wind measurements and X-ray emission physics, this work advances the capability to diagnose both solar wind-magnetosphere coupling and the diffuse X-ray background. The validated α-value will benefit data analysis for China's space projects in the 2020s, for examples SMILE, DIXE and EP.
  • 图 1  美国先进成份空间探测器(Advanced Composition Explorer, ACE)1998年至2011年监测的太阳风粒子状态数据, 除时序间隔外, 该图与Koutroumpa[23]文中图2基本一致. 从上到下: (a) 质子数密度 (cm–3), 灰线是1天平均, 绿线是1周平均; (b) 质子速度(km/s, 蓝线)和太阳表黑子计数(右纵轴, 灰线, 1天平均数据), 其来源于比利时太阳黑子指数和长期太阳观测中心[31]; (c) He2+ 离子数密度(cm–3), 灰线是1天平均, 红线是1周平均; (d)和(e) 不同元素(He、C、Ne、Mg和Si)与O元素丰度比; (f) 高电荷态的C6+C5+和O7+O6+离子比. 竖直点划线分隔的2个区域(2000—2002年和2008—2010年)分别是太阳活动最大和最小时间段

    Figure 1.  Status of solar wind particles from Advanced Composition Explorer (ACE) during 1998 and 2012. This figure is basically similar with Fig. 2 of Koutroumpa[23] with exception of time step. From top to bottom: (a) Proton density (cm–3), gray line is 1-day averaged, while green line is 1-week averaged; (b) Proton bulk velocity (km/s, blue line) and sun splot number (SSN, righ-axis) with 1-day averaged from the World Data Center SILSO[31]. (c) He2+ density (in cm–3), gray and red lines refer to 1-day and 1-week averaged. (d) and (e) Element (He, C, Ne, Mg and Si) abundance ratios relative to oxygen. (f) Ion fraction ratio of C6+C5+ and O7+O6+. Vertical dashed-dot lines separate two regions (i.e. 2000–2002 year and 2008–2010 year) for solar maximum and minimum, respectively.

    图 2  ACE卫星13年的太阳风粒子监测数据二维直方图或点分布图, 数据采用ACE网站的2小时平均数据, 其中太阳风质子速度和密度采用12分钟平均数据重新分组获得. 最上行是O7+O6+与C6+C5+关系的柱状(左)和点(右)分布, 左图中斜蓝线是来源于冕洞数据的分隔线, 即$ \dfrac{{\rm O}^{7+}}{{\rm O}^{6+}}\times \dfrac{{\rm C}^{6+}}{{\rm C}^{5+}}\leqslant 0.01 $, 红色的斜线是斜率是1.32的线性拟合线, 右图中按Koutroumpa[23]和Zhao等人[33]的方法分类了来源于冕洞(红)、冕流(蓝)和星际冕物质抛射物(深绿)的不同数据. 中图给出了O7+O6+与太阳风速度(左)和密度(右)关系的二维直方图. 下图给出了O元丰度与太阳风速度(左)和密度(右)关系的二维柱状分布

    Figure 2.  2D histograms and scatter distribution plots of ACE mission data from Feb. 1998 to Aug. 2011. Element and ion fraction data are from the ACE science center with 2-hour averaged, while proton bulk velocity and density are obtained by rebinning the 12-minute data available from the website. Top: O7+O6+ vs C6+C5+ in 2D histogram (left) and scatter (right). The oblique blue line in left panel refers to the criterion value of $ \dfrac{{\rm O}^{7+}}{{\rm O}^{6+}}\times \dfrac{{\rm C}^{6+}}{{\rm C}^{5+}}\leqslant 0.01 $ for coronal hole (CH) and streamer sources. Red line is a linear fit line with a slope of 1.32. Right panel shows the ACE data points of solar wind from different source in Sun by using the distinguise methods of Koutroumpa[23] and Zhao et al.[33], e.g. coronal holes, streamters and interplanetary coronal mass ejections (ICME).

    图 3  左: 1998年至2011年ACE监测到的不同太阳风离子(C6+, 5+, O8+, 7+, 6+和Ne9+, 8+)电荷交换X射线辐射在0.1—2.0 keV能带的辐射因子α-值的点分布图(左)和统计百分比分布(右). $ \star $形点来源于Whittaker和Sembay的结果[22, 标记为W16], 水平虚线是经典结果($ 6\times10^{-16} $eV cm2), 带误差棒的实心圆点是来源于Koutroumpa的不同太阳风起源的结果[23], 即冕流(红色点)、冕洞(蓝色点)和星际冕物质抛射(绿色点), 其能带宽是0.1—2.0 keV. 右: 所有记录点统计的平均辐射因子中各元素贡献百分比

    Figure 3.  Left: Scatter plot and statical distribution of the charge-exchange emission factor α-value of the ACE solar wind particles (C6+, 5+, O8+, 7+, 6+ and Ne9+, 8+) in the energy ranges of 0.1–2.0 keV. $ \star $ symbol points are from the results of Whittaker & Sembay[22, marked as W16]. Horizontal dashed line is the empirical value of $ 6\times10^{-16} $eV cm2. Filled circles with errorbar refers to the calculation by Koutroumpa[23]for different solar wind (e.g. streamers (red symbol with errorbar), CH (blue symbol), and ICMEs (green symbol)). Right: Percentage contribution from the different elements to the mean emission factor α-value of all recored data.

    图 4  不同观测时间段和不同太阳风起源的电荷交换辐射因子α值的统计分布, 及其与Koutroumpa结果[23, K24]的比较. 冕流: 红色阶梯线和带误差棒的实心圆点, 冕洞: 蓝色, 星际冕物质抛射: 绿色. 由于冕洞和星际冕物质抛射的统计数值小, 为便于比较, 均乘了6倍的任意数值. 上图是1998—2011年全时间段; 中图是太阳活动强周期2000—2002年; 下图中太阳活动弱周期2008—2010年

    Figure 4.  Statistical distribution of solar wind charge-exchange emission factor α-value during different observational period and for different solar wind sources, as well as its comparison with the results of Koutroumpa[23, K24]. Streamer: red step lines and filled circles with errorbars, CH: blue lines and symbols, ICMEs: green lines and symbols. For comparison, the statistical distribution of CH and ICMEs are multiplied by an arbitrary value of six. Top: full period of 1998–2011; Middle: 2000–2002 of solar maximum; Bottom: 2008–2010 of solar minimum.

    图 5  1998—2011年2小时平均的不同太阳风离子电荷交换X射线总辐射因子α-值与质子数密度(左)和速度(右)的二维直方图. 带误差棒实心圆点表示质子数密度和速度相应网格辐射因子的平均值和其方差, 折线分别表示冕物质抛射(青色)、冕流(黄色)和冕洞(蓝色)的辐射因子平均值

    Figure 5.  2D histograms of the charge-exchange emission factor α-value of all particles in solar wind versus proton density (left) and velocity (right) for 2-hour averaged data in 1998–2011. Filled symbols with errorbars refer to mean and standard variance of the α distribution at the grids of the proton density and velocity. Broken curves denotes mean α-value for ICMEs (cyan), Streamer (yellow) and CH (blue).

    表 1  不同太阳风离子与中性氢原子碰撞电荷交换截面数据来源.

    Table 1.  Charge exchange cross-setion sources of different solar wind ions with neutral hydrogen.

    太阳风离子 数据类型 数据来源
    O7+ 总截面 Zhang等人[27]
    O8+ nl分辨 Wu(email通迅)
    O6+ nl分辨 Wu等人[28]
    C6+ 总截面 Gu等人拟合公式[18]
    C5+ nl分辨 Nolte等人[29]
    Ne9+ nl分辨 Liu等人[30]
    Ne8+ nl分辨 Liu等人[30]
    Mg10+ 总截面 Gu等人拟合公式[18]
    Mg8+, 9+ 总截面 Midha & Gupta经验公式[25]
    Si(7-10)+ 总截面 Midha & Gupta经验公式[25]
    Fe(8-12)+ 总截面 Wargelin等人经验公式[26]
    DownLoad: CSV
  • [1]

    Snowden S L, Freyberg M J, Plucinsky P P, Schmitt J H M M, Tr $\ddot{u} $mper J, Voges W, Edgar R J, McCammon D & Sanders W T 1995 Astrophys. J. 454 643

    [2]

    Snowden S L, Egger R, Freyberg M J, McCammon D, Plucinsky P P, Sanders W T, Schmitt J H M M, Tr $\ddot{u} $mper J & Voges W 1997 Astrophys. J. 485 125

    [3]

    Freyberg M J 1994 The Local Bubble and Beyond 1 113

    [4]

    Lisse C M, Dennerl K, Englhauser J, Harden M, Marshall F E, Mumma M J, Petre R, Pye J P, Ricketts M J, Schmitt J, Tr $ \ddot{u}$mper J & West R G 1996 Science 274 205

    [5]

    Cravens T E 1997 Gelphys. Res. Lett. 24 105Google Scholar

    [6]

    Cox D P 1998 Ed. by Breitschwerdt D, Freyberg M J, Tr $ \ddot{u}$mper J 1998 Proceedings of the IAU Colloquium No. 166 Garching, Germany, April 21–25 1997 p121 会议文集

    [7]

    Cravens T E 2000 Astrophys. J. 532 L153Google Scholar

    [8]

    Wargelin B J, Markevitch M, Juda M, Kharchenko V, Edgar R & Dalgarno A 2004 Astrophys. J. 607 596Google Scholar

    [9]

    Bhardwaj A, Gladstone G R, Elsner R F, Waite J H, Grodent D, Cravens T E, Howell R R, Metzger A E, Ostgaard N, Maurellis A N, Johnson R E, Weisskopf M C, Majeed T, Ford P G Tennant A F, Clarke J T, Lewis W S, Hurley K C, Crary F J, Feigelson E D, Garmire G P, Young D T, Dougherty M K, Espinose S A & Jahn J M 2002 Proc. ESLAB 36 Symposium, `Earth-Like Planets and Moons' 215

    [10]

    Robertson I P & Cravens T E 2003 Gelphys. Res. Lett. 30 1439(22-1

    [11]

    Sembay S, Alme A L, Agnolon D, Arnold T, Beardmore A, Bel $ e$n Balado Margeli A B, Bicknell C, Bouldin C, Branduardi-Raymont G, Crawford T, Breuer J P, Buggey T, Butcher G, Canchal R, Carter J A, Cheney A, Collado-Vega Y, Connor H, Crawford T, Eaton N, Feldman C, Forsyth C, Frantzen T, Galgóczi G, Garcia J, Genov G Y, Gordillo C, Gröbelbauer H P, Guedel M, Guo Y, Hailey M, Hall D, Hampson R, Hasiba J, Hetherington O, Holland A, Hsieh S Y, Hubbard M W J, Jeszenszky H, Jones M, Kennedy T, Koch-Mehrin K, Kögel S, Krucker S, Kuntz K D, Laky G, Lylyund O, Martindale A, Mas Hesse J M, Nakamura R, Oksavik K, Østgaard N, Ottacher H, Ottensamer R, Pagani C, Parsons S, Patel P, Pearson J, Peikert G, Porter F S, Pouliantis T, Qureshi B H, Raab W, Randall G, Read A M, Roque N M M, Rostad M E, Runciman C, Sachdev S, Samsonov A, Soman M, Sibeck D, Smit S, Søndergard J, Speight R, Stavland S, Steller M, Sun T, Thornhill J, Thomas W, Ullaland K, Walsh B, Walton D, Wang C & Yang S 2024 Earth & Planetary Phys. 8 5

    [12]

    Beiersdorfer P, Boyce K R, Brown G V, Chen H, Kahn S M, Kelley R L, May M, Olson R E, Porter F S, Stahle C K & Tillotson W A 2003 Science 300 1558Google Scholar

    [13]

    Zhang R T, Liao T, Zhang C J, Zhou L P, Guo D L, Gao Y, Gu L Y, Zhu X L, Zhang S F & Ma X 2023 Mon. Not. R. Astron. Soc. 520 1417Google Scholar

    [14]

    Jin H, Mao J J, Chen L B, Chen N H, Cui W, Gao B, Li J J, Li X F, Liu J J, Quan J, Jiang C Y, Wang G L, Wang L, Wang Q, Wang S F, Xiao A M & Zhang S 2024 J. Low Temperature Phys. 215 256Google Scholar

    [15]

    Sun T R, Connor H, Samsonov A 2024 Earth & Planetary Phys. 8 1

    [16]

    Schwadron N A & Cravens T E 2000 Astrophys. J. 544 558Google Scholar

    [17]

    Smith R K, Foster A R & Brickhouse N S 2012 Astron. Nachr 333 301Google Scholar

    [18]

    Gu L Y, Kaastra J & Raassen A J J 2016 A&A 588 A52

    [19]

    Cumbee R, Stancil P & Mcilvane S 2021 American Astronomical Society Meeting 238 12601

    [20]

    Liang G Y, Li F, Wang F L, Wu Y, Zhong J Y & Zhao G 2014 Astrophys. J. 783 124Google Scholar

    [21]

    Liang G Y, Zhu X L, Wei H G, Yuan D W, Zhong J Y, Wu Y, Hutton R, Cui W, Ma X W & Zhao G 2021 Mon. Not. R. Astron. Soc. 508 2194Google Scholar

    [22]

    Whittaker I C & Sembay S 2016 Gelphys. Res. Lett. 43 7328Google Scholar

    [23]

    Koutroumpa D 2024 Earth & Planetary Phys. 8 105

    [24]

    Liang G Y, Sun T R, Lu H Y, Zhu X L, Wu Y, Li S B, Wei H G, Yuan D W, Zhong J Y, Cui W, Ma X W & Zhao G 2023 Astrophys. J. 943 85Google Scholar

    [25]

    Midha J M & Gupta S C 1994 J. Quant. Spectrosc. Radiat. Transfer 52 897Google Scholar

    [26]

    Wargelin B J, Beiersdorfer P & Brown G V 2008 Can. J. Phys. 86 151Google Scholar

    [27]

    Zhang R T, Seely D G, Andrianarijaona V M, Dragani $ \acute{c}$ I N & Havener C C 2022 Astrophys. J. 931 1

    [28]

    Wu Y, Stancil P C, Schultz D R, Hui Y, Liebermann H P & Buenker R J 2012 J. Phs. B: At. Mol. Opt. Phys. bf 45 235201

    [29]

    Nolte J L, Stancil P C, Liebermann H P, Buenker R J, Hui Y & Schultz D R 2012 J. Phs. B: At. Mol. Opt. Phys. 45 245202Google Scholar

    [30]

    Liu L, Wu Y, Wang J G & Janev R K 2022 At. Data & Nuclear Data Tables 143 101464

    [31]

    Royal Observatory of Belgium, on-line Sunspot Number catalogue ‘1998-2012’ http://www.sidc.be/SILSO/, 0 0

    [32]

    Landi E, Gruesbeck J R, Lepri S T, Zurbuchen T H & Fisk L A 2012 Astrophys. J. 761 48Google Scholar

    [33]

    Zhao L, Zurbuchen T H & Fisk L A 2009 Gelphys. Res. Lett. 36 L14104

    [34]

    Zhao L, Landi E, Lepri S T, Kocher M, Zurbuchen T H, Fisk L A, & Raines M J 2017 Astrophys. J. Supp. Ser. 228 4Google Scholar

    [35]

    Zhang C, Ling Z X, Sun X J, Sun S L, Liu Y, Li Z D, Xue Y L, Chen Y F, Dai Y F, Jia Z Q, Liu H Y, Zhang X F, Zhang Y H, Zhang S N, Chen F S, Cheng Z W, Fu W, Han Y X, Li H, Li J F, Li Y, Liu P R, Ma X H, Tang Y J, Wang C B, Xie R J, Yan A L, Zhang Q, Jiang B W, Jin G, Li L H, Qiu X B, Su D T, Sun J N, Xu Z, Zhang S K, Zhang Z, Zhang N, Bi X Z, Cai Z M, He J W, Liu H Q, Zhu X C, Cheng H Q, Cui C Z, Fan D W, Hu H B, Huang M H, Jin C C, Li D Y, Pan H W, Wang W X, Xu Y F, Yang X, Zhang B, Zhang M, Zhang W D, Zhao D H, Bai M, Ji Z, Liu Y R, Ma F L, Su J, Tong J Z, Wang Y S, Zhao Z J, Feldman C, O'Brien P, Osborne J P, Willingale R, Burwitz V, Hartner G, Langmeier A, M $\ddot{u} $ller T, Rukdee S, Schmidt T, Kuulkers E & Yuan W 2022 Astrophys. J. Lett. 941 2

  • [1] CHAN Ying, YAN Yujie, WU Yuetong, WANG Qisi. Research progress of resonant X-ray scattering of charge order in cuprate superconductors. Acta Physica Sinica, doi: 10.7498/aps.74.20241402
    [2] Li Qi-Zhi, Zhang Shi-Long, Peng Ying-Ying. Resonant inelastic X-ray scattering study of charge density waves and elementary excitations in cuprate superconductors. Acta Physica Sinica, doi: 10.7498/aps.73.20240983
    [3] Liu Chao, Liu Shi-Long, Yang Yi, Feng Jing, Li Yu-Zhao. K X-ray emission and kinetic energy-nuclear charge relationship of 252Cf spontaneous fission. Acta Physica Sinica, doi: 10.7498/aps.73.20240563
    [4] Xu Jia-Wei, Xu Chuan-Xi, Zhang Rui-Tian, Zhu Xiao-Long, Feng Wen-Tian, Zhao Dong-Mei, Liang Gui-Yun, Guo Da-Long, Gao Yong, Zhang Shao-Feng, Su Mao-Gen, Ma Xin-Wen. Experimental measurement of state-selective charge exchange and test of astrophysics soft X-ray emission model. Acta Physica Sinica, doi: 10.7498/aps.70.20201685
    [5] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Mei Ce-Xiang, Zhou Xian-Ming, Xiao Guo-Qing. Study of X-ray spectrum emitted due to the impact of 129Xeq+ on different ion's charge on Au. Acta Physica Sinica, doi: 10.7498/aps.64.053201
    [6] Shi Hong, Tian Li-Cheng, Yang Sheng-Sheng. Analysis of data obtained by the solar wind ion detector onboard the Chang’E-1 Lunar orbiter. Acta Physica Sinica, doi: 10.7498/aps.63.069601
    [7] Han Lu-Hui, Zhang Chong-Hong, Zhang Li-Qing, Yang Yi-Tao, Song Yin, Sun You-Mei. X-ray photoelectron spectroscopy study on GaN crystal irradiated by slow highly charged ions. Acta Physica Sinica, doi: 10.7498/aps.59.4584
    [8] Yuan Yong-Teng, Hao Yi-Dan, Zhao Zong-Qing, Hou Li-Fei, Miao Wen-Yong. Dynamic range of X-ray streak camera affected by space charge effect. Acta Physica Sinica, doi: 10.7498/aps.59.6963
    [9] Yang Zhi-Hu, Song Zhang-Yong, Chen Xi-Meng, Zhang Xiao-An, Zhang Yan-Ping, Zhao Yong-Tao, Cui Ying, Zhang Hong-Qiang, Xu Xu, Shao Jian-Xiong, Yu De-Yang, Cai Xiao-Hong. X-ray emission produced by interaction of highly ionized Arq+ ions with metallic targets. Acta Physica Sinica, doi: 10.7498/aps.55.2221
    [10] Yang Chao-Wen, Miao Jing-Wei, Wang Guang-Lin, Liu Xiao-Dong, Shi Mian-Gong. The electron exchange of MeV hydrogen micro-cluster ions with solids. Acta Physica Sinica, doi: 10.7498/aps.55.5810
    [11] Guo Guan-Jun, Su Lin, Bi Si-Wen. Polarimetric microwave radiation of wind-roughened sea surfaces. Acta Physica Sinica, doi: 10.7498/aps.54.2448
    [12] Yang Bai-Fang, Miao Jing-Wei, Yang Chao-Wen, Shi Mian-Gong, Tang A-You, Liu Xiao-Dong. . Acta Physica Sinica, doi: 10.7498/aps.51.55
    [13] . Acta Physica Sinica, doi: 10.7498/aps.49.282
    [14] XU ZHANG-CHENG, GUO CHANG-LIN, ZHAO ZONG-YAN, XU JIA-YUE, ZHOU SHENG-MING, QI ZE-MING, T. FUKAMACHI, R. NEGISHI, T. NAKAJIMA. RESONANT X-RAY DYNAMICAL DIFFRACTION METHOD FOR DETERMINING TEMPERATURE FACTOR. Acta Physica Sinica, doi: 10.7498/aps.47.1520
    [15] LIU SHENG-XIA. MASS RESOLVING CHARGE-EXCHANGE NEUTRAL PARTICLE MEASUREMENT ON HT-7 TOKAMAK. Acta Physica Sinica, doi: 10.7498/aps.47.1118
    [16] LIU SHENG-XIA. ANALYSIS OF CHARGE-EXCHANGE SPECTRA DURING NBI HEATING IN THE HT-6M TOKAMAK. Acta Physica Sinica, doi: 10.7498/aps.45.449
    [17] WANG YAN-SEN, PAN LI-MIN, HUANG FA-YANG, FANG DU-FEI, TANG JIA-YONG, YANG FU-JIA. CHARGE-EXCHANGE OF CESIUM ION/ATOM WITH METAL SURFACES. Acta Physica Sinica, doi: 10.7498/aps.43.1950
    [18] JIN CHUN-LIN, LI ZHONG, ZANG DE-HONG, YE HUI, TANG JIA-YONG, YANG FU-JIA. CHARGE TRANSFER BETWEEN ALKALI ATOMS AND W,Pt SURFACES. Acta Physica Sinica, doi: 10.7498/aps.42.1410
    [19] LIU QIANG, WANG JIAN-ZHONG, XU XIANG-DONG, CHEN XUE-JUN. EXPONENTIAL VARIATION METHOD FOR CHARGE EXCHANGE IN H++ H COLLISIONS. Acta Physica Sinica, doi: 10.7498/aps.40.1590
    [20] GU YUAN-XIN, GE PEI-WEN, ZHAO YA-QIN, HU BO-QING, WU LAN-SHENG, FU QUAN-GUI. X-RAY TOPOGRAPHICAL STUDY ON DEFECTS IN α-LiIO3 DECORATED BY SPACE CHARGE DUE TO THE APPLIED DC FIELDS. Acta Physica Sinica, doi: 10.7498/aps.29.711
Metrics
  • Abstract views:  331
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  13 March 2025

/

返回文章
返回