Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Charge transfer of laser-accelerated low-energy carbon ions in CHO foams

CHENG Yu REN Jieru MA Bubo LIU Yun ZHAO Ziqian WEI Wenqing Dieter H. H. Hoffmann DENG Zhigang QI Wei ZHOU Weimin CHENG Rui LI Zhongliang SONG Lei LI Yuan ZHAO Yongtao

Citation:

Charge transfer of laser-accelerated low-energy carbon ions in CHO foams

CHENG Yu, REN Jieru, MA Bubo, LIU Yun, ZHAO Ziqian, WEI Wenqing, Dieter H. H. Hoffmann, DENG Zhigang, QI Wei, ZHOU Weimin, CHENG Rui, LI Zhongliang, SONG Lei, LI Yuan, ZHAO Yongtao
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Charge transfer processes in ion-matter interactions are crucial for ion beam-driven high-energy density physics, materials irradiation damage and charge state stripping in accelerator techniques. Here we generated carbon ion beams with energies in the MeV energy range through TNSA (target normal sheath acceleration) mechanism, and measured the average charge state of 1.5 ~ 4.5 MeV carbon ion beams passing through porous C9H16O8 foam with 2 mg/cm3 volume density. The measured average charge states are compared with various semi-empirical formula and rate equation-predicted equilibrated average charge state. The results show that the rate equation predictions fully considering the ionization, capture, excitation, and de-excitation processes are in good agreement with experiment. The rate equation prediction using gas target cross-section data underestimated the experimental data, because the target density effects caused by the solid fiber filaments in foam-structured target increases the ionization probability through frequent collisions and decrease the electron capture probability, which leads to an enhancement of ion charge states. In the projectile energy range above 3 MeV, the experimental data agree with rate equation predictions employing solid-target cross-section data. However, a significant deviation emerges in the energy region below 3 MeV due to the fact that in this energy regime, the lifetime of ion excited states is shorter than the collisional time scale. In this case, excited electrons have time to de-excite to the ground state before the second collision occurs. Consequently, the target density effects are weakened, and the charge states was reduced. The experimental results agree well with predictions from the ETACHA code, which considers excitation and de-excitation processes in detail. This work provides data and references to better understand the ion-matter interactions and to discriminate the various charge exchange models.
  • [1]

    Shima K, Kuno N, Yamanouchi M 1989Phys. Rev. A 40 3557

    [2]

    Zhao Y T, Zhang Y N, Cheng R, He B, Liu C L, Zhou X M, Lei Y, Wang Y Y, Ren J R, Wang X, Chen Y H, Xiao G Q, Savin S M, Gavrilin R, Golubev A A, Hoffmann D H H 2021Phys. Rev. Lett. 126 115001

    [3]

    Rothard H, Grandin J P, Jung M, Clouvas A, Rozet J P, Wünsch R 1997Nucl. Instrum. Methods Phys. Res. Sect. B 132 359

    [4]

    Betz H D 1972Rev. Mod. Phys. 44 465

    [5]

    Deutsch C, Maynard G 2016Matter Radiat. Extremes 1 277

    [6]

    Gao J, Hu Z, Wu Y, Wang J, Sisourat N, Dubois A 2021Matter Radiat. Extremes 6 014404

    [7]

    Erb W GSI Report GSI-P-78 1978 Darmstadt

    [8]

    Ali R, Beiersdorfer P, Harris C L, Neill P A 2016Phys. Rev. A 93 012711

    [9]

    Ma X W, Zhang S F, Wen W Q, Huang Z K, Hu Z M, Guo D L, Gao J W, Najjari B, Xu S Y, Yan S C, Yao K, Zhang R T, Gao Y, Zhu X L 2022Chin. Phys. B 31 093401

    [10]

    Kawata S, Karino T, Ogoyski A I 2016Matter Radiat. Extremes 1 89

    [11]

    Hofmann I 2018Matter Radiat. Extremes 3 1

    [12]

    Zhao Q, Cao S C, Liu M, Sheng X K, Wang Y R, Zong Y, Zhang X M, Jing Y, Cheng R, Zhao Y T, Zhang Z M, Du Y C, Gai W 2016Nucl. Instrum. Methods Phys. Res. Sect. A 832 144

    [13]

    Zhao Y, Zhang Z, Gai W, Du Y, Cao S, Qiu J, Zhao Q, Cheng R, Zhou X, Ren J, Huang W, Tang C, Xu H, Zhan W 2016Laser Part. Beams 34 338

    [14]

    Zhao Y T, Rui Cheng R, Wang Y Y, Zhou X M, Lei Y, Sun Y B, Xu G, Ren J R, Sheng L N, Zhang Z M, Xiao G Q 2014High Power Laser Science and Engineering. 2 e39

    [15]

    Bohr N 1941Phys. Rev. 59 270

    [16]

    Anthony J M, Lanford W A 1892Phys. Rev. A 25 1868

    [17]

    Ziegler J F, Biersack J P 1985Treatise on Heavy - Ion Science 6 93

    [18]

    Kreussler S, Varelas C, Brandt W 1981Phys. Rev. B 23 82

    [19]

    Nikolaev V S, Dmitriev I S 1968Phys. Lett. A 28 277

    [20]

    Brown M D, Moak C D 1972Phys. Rev. B 6 90

    [21]

    Shima K, Ishihara T, Mikumo T 1982Nucl. Instrum. Methods Phys. Res. 200 605

    [22]

    To K X, Drouin R 1976Phys. Scr. 14 277

    [23]

    Schiwietz G, Grande P L 2001Nucl. Instrum. Methods Phys. Res. Sect. B 175 125

    [24]

    Basko M M 1984Sov. J. Plasma Phys. 10 689

    [25]

    Northcliffe L C 1960Phys. Rev. 120 1744

    [26]

    Gauthier M, Chen S N, Levy A, Audebert P, Blancard C, Ceccotti T, Cerchez M, Doria D, Floquet V, Lamour E, Peth C, Romagnani L, Rozet J P, Scheinder M, Shepherd R, Toncian T, Vernhet D, Willi O, Borghesi M, Faussurier G, Fuchs J 2013Phys. Rev. Lett. 110 135003

    [27]

    Tolstikhina I Y, Shevelko V P 2018Phys. - Usp. 61 247

    [28]

    Lassen N O 1951Kgl. Danske Vidensk. Selskab. Math. - Fys. Medd. 26 5

    [29]

    Bohr N, Lindhard J 1954Kgl. Danske Vidensk. Selskab. Math. - Fys. Medd. 28 7

    [30]

    Shevelko V P, Rosmej O, Tawara H, Tolstikhina I Y 2004J. Phys. B: At. Mol. Opt. Phys. 37 201

    [31]

    Shevelko V P, Tawara H, Ivanov O V, Miyoshi T, Noda K, Sato Y, Subbotin A V, Tolstikhina I Y 2005J. Phys. B: At. Mol. Opt. Phys. 38 2675

    [32]

    Kistler S S 1931Nature 127 741

    [33]

    Rosmej O N, Suslov N, Martsovenko D, Vergunova G, Borisenko N, Orlov N, Rienecker T, Klir D, Rezack K, Orekhov A, Borisenko L, Krousky E, Pfeifer M, Dudzak R, Maeder R, Schaechinger M, Schoenlein A, Zaehter S, Jacoby J, Limpouch J, Ullschmied J, Zhidkov N 2015Plasma Phys. Control. Fusion 57 094001

    [34]

    Ren J R, Deng Z G, Qi W, Chen B Z, Ma B B, Wang X, Yin S, Feng J H, Liu W, Xu Z F, Hoffmann D H H, Wang S Y, Fan Q P, Cui B, He S K, Cao Z R, Zhao Z Q, Cao L F, Gu Y Q, Zhu S P, Cheng R, Zhou X M, Xiao G Q, H W, Zhang Y H, Zhang Z, Li Y T, Wu D, Zhou W M, Zhao Y T 2020Nat. Commu. 11 5157

    [35]

    Ma B B, Ren J R, Wang S Y, Hoffmann D H H, Deng Z G, Qi W, Wang X, Yin S, Feng J H, Fan Q P, Liu W, Xu Z F, Chen Y, Cui B, He S K, Cao Z R, Zhao Z Q, Gu Y Q, Zhu S P, Cheng R, Zhou X M, Xiao G Q, Zhao H W, Zhang Y H, Zhang Z, Li Y T, Xu X, Wei W Q, Chen B Z, Zhang S Z, Hu Z M, Liu L R, Li F F, Xu H, Zhou W M, Cao L F, Zhao Y T 2021Astrophys. J. 920 106

    [36]

    Renner O, Klimo O, Krus K, Nicolaï P, Poletaeva A, Bukharskii N, Tikhonchuk V T 2025Matter Radiat. Extremes 10 037403

    [37]

    Braenzel J, Andreev A A, Platonov K, Klingsporn K, Ehrentraut L, Sandner W, Schnürer M 2015Phys. Rev. Lett.114 124801

    [38]

    Henig A, Steinke S, Schnürer M, Sokollik T, Hörlein R, Kiefer D, Jung D, Schreiber J, Hegelich B M, Yan X Q, Meyer-ter V J, Tajima T, Nickles P V, Sandner W, Habs D 2009Phys. Rev. Lett. 103 245003

    [39]

    Braenzel J, Barriga-Carrasco M D, Morales R, Schnürer M 2018Phys. Rev. Lett. 120 184801

    [40]

    Zhu Jun-Gao, Lu Hai-Yang, Zhao Yuan, Lai Mei-Fu, Gu Yong-Li, Xu Shi-Xiang, Zhou Cang-Tao 2022Acta Phys. Sin. 71 194102(in Chinese) [朱军高,卢海洋,赵媛,赖美福,古永力,徐世祥,周沧涛2022物理学报71 194102]

    [41]

    Shuan Zhao, Chen Lin, Jia-Er Chen, Wen-Jun Ma, Jun-Jie Wang, Xue-Qing Yan 2016Chin. Phys. Lett. 33 035202

    [42]

    Ren J R, Ma B B, Liu L R, Wei W Q, Chen B Z, Zhang S Z, Xu H, Hu Z M, Li F F, Wang X, Yin S, Feng J H, Zhou X M, Gao Y F, Li Y, Shi X H, Li J X, Ren X G, Xu Z F, Deng Z G, Qi W, Wang S Y, Fan Q P, Cui B, Wang W W, Yuan Z Q, Teng J, Wu Y C, Cao Z R, Zhao Z Q, Gu Y Q, Cao L F, Zhu S P, Cheng R, Lei Y, Wang Z, Zhou Z X, Xiao G Q, Zhao H W, Hoffmann D H H, Zhou W M, Zhao Y T 2023Phys. Rev. Lett. 130 095101

    [43]

    Ma B B, Ren J R, Liu L R, Wei W Q, Chen B Z, Zhang S Z, Xu H, Hu Z M, Li F F, Wang X, Li W X, Li Q Y, Yin S, Feng J H, Zhou X M, Gao Y F, Li Y, Shi X H, Li J X, Ren X G, Xu Z F, Deng Z G, Qi W, Wang S Y, Fan Q P, Cui B, Wang W W, Yuan Z Q, Teng J, Wu Y C, Cao Z R, Zhao Z Q, Gu Y Q, Cao L F, Zhu S P, Cheng R, Lei Y, Wang Z, Zhou Z X, Xiao G Q, Zhao H W, Hoffmann D H H, Zhou W M, Zhao Y T 2024Phys. Rev. A 109 042810

    [44]

    Hattass M, Schenkel T, Hamza A V, Barnes A V, Newman M W, McDonald J W, Niedermayr T R, Machicoane G A, Schneider D H 1999Phys. Rev. Lett. 82 4795

    [45]

    Charge changing cross sections code, Novikov N V http://cdfe.sinp.msu.ru/services/cccc/htm/ [2024-7-28]

    [46]

    Novikov N V, Teplova Y A 2014Phys. Lett. A 378 1286

    [47]

    Rozet J P, Stephan C, Vemhet D 1996Nucl. Instrum. Methods Phys. Res. Sect. B 107 67

    [48]

    Tarasov O B, Bazin D 2008Nucl. Instrum. Methods Phys. Res. Sect. B 266 4657

    [49]

    Lamour E, Fainstein P D, Galassi M, Prigent C, Ramirez C A, Rivarola R D, Rozet J P, Trassinelli M, Vernhet D 2015Phys. Rev. A 92 042703

    [50]

    Soumaya, Manai, Salhi D E, Nasr S B, Jelassi H 2022Results Phys. 37 105487

  • [1] LIANG Yaqiong, LIANG Guiyun. Solar wind charge-exchange X-ray emission factor based on ACE observation data. Acta Physica Sinica, doi: 10.7498/aps.74.20241603
    [2] Zhu Jun-Gao, Lu Hai-Yang, Zhao Yuan, Lai Mei-Fu, Gu Yong-Li, Xu Shi-Xiang, Zhou Cang-Tao. Beamline design with weak-focusing magnetic field for applications of laser-driven proton beams. Acta Physica Sinica, doi: 10.7498/aps.71.20220599
    [3] Xu Jia-Wei, Xu Chuan-Xi, Zhang Rui-Tian, Zhu Xiao-Long, Feng Wen-Tian, Zhao Dong-Mei, Liang Gui-Yun, Guo Da-Long, Gao Yong, Zhang Shao-Feng, Su Mao-Gen, Ma Xin-Wen. Experimental measurement of state-selective charge exchange and test of astrophysics soft X-ray emission model. Acta Physica Sinica, doi: 10.7498/aps.70.20201685
    [4] Zhang Xiao-Hui, Dong Ke-Gong, Hua Jian-Fei, Zhu Bin, Tan Fang, Wu Yu-Chi, Lu Wei, Gu Yu-Qiu. Transverse distribution of electron beam produced by relativistic picosecond laser in underdense plasma. Acta Physica Sinica, doi: 10.7498/aps.68.20191106
    [5] Yang Si-Qian, Zhou Wei-Min, Wang Si-Ming, Jiao Jin-Long, Zhang Zhi-Meng, Cao Lei-Feng, Gu Yu-Qiu, Zhang Bao-Han. Focusing effect of channel target on ultra-intense laser-accelerated proton beam. Acta Physica Sinica, doi: 10.7498/aps.66.184101
    [6] Ling Wei-Jun, Dong Quan-Li, Zhang Lei, Zhang Shao-Gang, Dong Zhong, Wei Kai-Bin, Wang Shou-Jun, He Min-Qing, Sheng Zheng-Ming, Zhang Jie. Laser driven shock accelerated ion energy spectrumbroadening mechanisms in over-dense plasmas. Acta Physica Sinica, doi: 10.7498/aps.60.075201
    [7] Huang Shi-Hua, Wu Feng-Min. Electron acceleration by a focused laser pulse in static electric field. Acta Physica Sinica, doi: 10.7498/aps.57.7680
    [8] Wu Di, Gong Ye, Liu Jin-Yuan, Wang Xiao-Gang, Liu Yue, Ma Teng-Cai. Numerical study of dynamic effects and evaporation of target material under irradiation of intense pulsed ion beam. Acta Physica Sinica, doi: 10.7498/aps.55.3501
    [9] Chen Min, Sheng Zheng-Ming, Zheng Jun, Zhang Jie. Numerical simulation of acceleration of electrons and ions in the interaction of intense laser pulses with dense gaseous targets. Acta Physica Sinica, doi: 10.7498/aps.55.2381
    [10] Wu Di, Gong Ye, Liu Jin-Yuan, Wang Xiao-Gang, Liu Yue, Ma Teng-Cai. Two-dimension numerical research on the ablation of target irradiated by intense pulsed ion beam. Acta Physica Sinica, doi: 10.7498/aps.55.398
    [11] Yang Chao-Wen, Miao Jing-Wei, Wang Guang-Lin, Liu Xiao-Dong, Shi Mian-Gong. The electron exchange of MeV hydrogen micro-cluster ions with solids. Acta Physica Sinica, doi: 10.7498/aps.55.5810
    [12] Wu Di, Gong Ye, Liu Jin-Yuan, Wang Xiao-Gang. Study on irradiation threshold of a target irradiated by an intense pulsed ion b eam. Acta Physica Sinica, doi: 10.7498/aps.54.1636
    [13] Hua Jian-Fei, Huo Yu-Kun, Lin Yu-Zheng, Chen Zhao, Xie Yong-Jie, Zhang Shao-Yin, Yan Zheng, Xu Jun-Jie. Dynamic characteristics of electrons in high-order corrected fields of ultrashort laser pulses. Acta Physica Sinica, doi: 10.7498/aps.54.653
    [14] Bai Long, Weng Jia-Qiang, Fang Jin-Qing, Luo Xiao-Shu. The simulation of ionic radial density in high intensity ion beam*. Acta Physica Sinica, doi: 10.7498/aps.53.4126
    [15] Yang Bai-Fang, Miao Jing-Wei, Yang Chao-Wen, Shi Mian-Gong, Tang A-You, Liu Xiao-Dong. . Acta Physica Sinica, doi: 10.7498/aps.51.55
    [16] LIAO MEI-YONG, ZHANG JIAN-HUI, QIN FU-GUANG, LIU ZHI-KAI, YANG SHAO-YAN, WANG ZHAN-GUO, LEE SHUIT-TANG. CARBON FILM DEPOSITED BY MASS-SELECTED LOW ENERGY ION BEAM TECHNIQUE AND ION BOMBARDMENT EFFECT. Acta Physica Sinica, doi: 10.7498/aps.49.2186
    [17] WANG YAN-SEN, PAN LI-MIN, HUANG FA-YANG, FANG DU-FEI, TANG JIA-YONG, YANG FU-JIA. CHARGE-EXCHANGE OF CESIUM ION/ATOM WITH METAL SURFACES. Acta Physica Sinica, doi: 10.7498/aps.43.1950
    [18] WANG YOU-NIAN, MA TENG-CAI, GONG YE. ELECTRONIC STOPPING POWER AND EFFECTIVE CHARGE OF HEAVY ION-BEAM IN HOT TARGETS. Acta Physica Sinica, doi: 10.7498/aps.42.631
    [19] LI FU-LI. CONTINUOUSLY TURNABLE LASER FROM INFRARED TO X-RAY REGION BY USING THE RELATIVISTIC DOPPLER EFFECT OF HIGH ENERGY ION BEAM IN NEGATIVE TEMPERATURE STATE. Acta Physica Sinica, doi: 10.7498/aps.29.429
    [20] SEN QING-HE, JIANG SONG-SHENG, GU YI-PAN. PULSED MODULATION OF CYCLOTRON ION BEAM. Acta Physica Sinica, doi: 10.7498/aps.16.94
Metrics
  • Abstract views:  49
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Available Online:  08 July 2025
  • /

    返回文章
    返回