Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transverse distribution of electron beam produced by relativistic picosecond laser in underdense plasma

Zhang Xiao-Hui Dong Ke-Gong Hua Jian-Fei Zhu Bin Tan Fang Wu Yu-Chi Lu Wei Gu Yu-Qiu

Citation:

Transverse distribution of electron beam produced by relativistic picosecond laser in underdense plasma

Zhang Xiao-Hui, Dong Ke-Gong, Hua Jian-Fei, Zhu Bin, Tan Fang, Wu Yu-Chi, Lu Wei, Gu Yu-Qiu
PDF
HTML
Get Citation
  • Energetic electron beam can be generated through the directlaser acceleration (DLA) mechanism when high power picosecond laser propagates in underdense plasma, and the electron yield can reach several hundred nC, which has a great application in driving secondary radiations, such as bremsstrahlung radiation and betatron radiation. When a linearly polarized laser is used, the beam divergence is always larger in the laser polarization direction. What is more, the forked spectral-spatial distribution is observed in the experiments driven by femtosecond laser where DLA is combined with the laser wakefield acceleration (LWFA). The forked distribution is regarded as an important feature of DLA. However, an analytical explanation for both the bigger divergence and the forked spectral-spatial distribution is still lacking. Two-dimensional (2D) particle-in-cell simulations of picosecond laser propagating in underdense plasma are conducted in this paper to show how the fork is formed in DLA. The fork structure is a reflection of the distribution of electron transverse velocity. We find that when electrons are accelerated longitudinally, the transverse oscillation energy in the laser polarization direction increases correspondingly. If the electron energy is high enough, the transverse oscillation energy will increase linearly with the electron energy. As a result, the most energetic electrons will have an equal amplitude of vy, where vy denotes the velocity in the laser polarization direction. For a single electron, the distribution of its transverse velocity over a long period $\dfrac{{{\rm d}P}}{{{\rm d}{v_y}}}$, will peak at ±vm (vm denotes the amplitude of vy). If all the electrons have the same vm, the distribution of vy at a given time will be the same as $\dfrac{{{\rm d}P}}{{{\rm d}{v_y}}}$. That means they will split transversely, leading to a forked spectral-spatial distribution. By using a simplified model, the analytical expression of vm is derived, showing good agreement with vm in the PIC simulation. However, the oscillation energy in the direction perpendicular to polarization will decrease when electrons are accelerated longitudinally (acceleration damping). As a consequence, the divergence perpendicular to the polarization direction will be smaller. Our research gives a quantitative explanation for the transverse distribution of electrons generated by DLA. With some modification, it can also be used in DLA combined LWFA to better control the dephasing length.
      Corresponding author: Gu Yu-Qiu, yqgu@caep.cn
    • Funds: Project supported by the National Key Program for S&T Research and Development, China (Grant No. 2016YFA0401100), and Science Challenge Project, China (Grant No.TZ2018005)
    [1]

    Tajima T, Dawson J 1979 Phys. Rev. Lett. 43 267Google Scholar

    [2]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [3]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F, Malka V 2004 Nature 431 541Google Scholar

    [4]

    Geddes C, Toth C, van Tilborg J, Esarey E, Schroeder C, Bruhwiler D, Nieter C, Cary J, Leemans W 2004 Nature 431 538Google Scholar

    [5]

    Mangles S, Murphy C, Najmudin Z, Thomas A, Collier J, Dangor A, Divall E, Foster P, Gallacher J, Hooker C 2004 Nature 431 535Google Scholar

    [6]

    Lu W, Tzoufras M, Joshi C, Tsung F S, Mori W B, Vieira J, Fonseca R A, Silva L O 2007 Phys. Rev. ST Accel. Beams 10 061301Google Scholar

    [7]

    Gahn C, Tsakiris G, Pukhov A, Meyer-ter-Vehn J, Pretvyler G, Thirolf P, Habs D, Witte K 1999 Phys. Rev. Lett. 83 4772Google Scholar

    [8]

    Mangles S P D, Walton B R, Tzoufras M, Najmudin Z, Clarke R J, Dangor A E, Evans R G, Fritzler S, Gopal A, Hernandez-Gomez C, Mori W B, Rozmus W, Tatarakis M, Thomas A G R, Tsung F S, Wei M S, Krushelnick K 2005 Phys. Rev. Lett. 94 245001Google Scholar

    [9]

    Willingale L, Thomas A G R, Nilson P M, Chen H, Cobble J, Craxton R S, Maksimchuk A, Norreys P A, Sangster T C, Scott R H H, Stoeckl C, Zulick C, Krushelnick K 2013 New J. Phys. 15 025023Google Scholar

    [10]

    Albert F, Lemos N, Shaw J L, Pollock B B, Goyon C, Schumaker W, Saunders A M, Marsh K A, Pak A, Ralph J E, Martins J L, Amorim L D, Falcone R W, Glenzer S H, Moody J D, Joshi C 2017 Phys. Rev. Lett. 118 134801Google Scholar

    [11]

    Lemos N, Albert F, Shaw J L, Papp D, Polanek R, King P, Milder A, Marsh K A, Pak A, Pollock B 2018 Plasma Phys. Contr. F. 60

    [12]

    Sarri G, Poder K, Cole J M, Schumaker W, Piazza A D, Reville B, Dzelzainis T, Doria D, Gizzi L A, Grittani G 2015 Nat. Commun. 6 6747Google Scholar

    [13]

    Ledingham K W D, Mckenna P, Singhal R P 2003 Science 300 1107Google Scholar

    [14]

    Qi W, Zhang X, Zhang B, He S, Zhang F, Cui B, Yu M, Dai Z, Peng X, Gu Y 2019 Phys. Plasmas 26 043103Google Scholar

    [15]

    Nilson P M, Mangles S P D, Willingale L, Kaluza M C, Thomas A G R, Tatarakis M, Clarke R J, Lancaster K L, Karsch S, Schreiber J, Najmudin Z, Dangor A E, Krushelnick K 2010 New J. Phys. 12 045014Google Scholar

    [16]

    Tsakiris G D, Gahn C, Tripathi V K 2000 Phys. Plasmas 7 3017Google Scholar

    [17]

    Pukhov A, Sheng Z M, Meyer-ter-Vehn J 1999 Phys. Plasmas 6 2847Google Scholar

    [18]

    Shaw J L, Lemos N, Amorim L D, Vafaei-Najafabadi N, Marsh K A, Tsung F S, Mori W B, Joshi C 2017 Phys. Rev. Lett. 118 064801Google Scholar

    [19]

    Gallardo González I, Ekerfelt H, Hansson M, Audet T L, Aurand B, Desforges F G, Dufrénoy S D, Persson A, Davoine X, Wahlström C G, Cros B, Lundh O 2018 New J. Phys. 20 053011Google Scholar

    [20]

    Zhang X, Khudik V N, Shvets G 2015 Phys. Rev. Lett. 114 184801Google Scholar

    [21]

    Shaw J L, Lemos N, Marsh K A, Froula D H, Joshi C 2018 Plasma Phys. Contr. F. 60 044012Google Scholar

    [22]

    Fonseca R A, Silva L O, Tsung F S, Decyk V K, Lu W, Ren C, Mori W B, Deng S, Lee S, Katsouleas T 2002 International Conference on Computational Science Amsterdam, The Netherlands, April 21−24, 2002 p342

  • 图 1  PIC模拟中$t = 5965\omega _0^{ - 1}$时刻的(a)激光强度包络, (b)电子的电荷密度分布与(c)通道内的聚焦场${E_{\rm{s}}} = {E_{y{\rm{s}}}} - $$c{B_{z{\rm{s}}}} $, 模拟中, 等离子体密度为2 × 1019 cm–3, 激光脉宽为0.8 ps, a0 = 3

    Figure 1.  (a) The laser envelope; (b) electron density; (c) channel focusing force ${E_{\rm{s}}} = {E_{y{\rm{s}}}} - c{B_{z{\rm{s}}}}$ at $t = 5965\omega _0^{ - 1}$ into the simulation, in which the plasma density is 2 × 1019 cm–3 and the laser have a duration 0.8 ps with a0 = 3.

    图 2  $t = 5965\omega _0^{ - 1}$时刻电子在相空间的分布 (a)电子在能量-vy相空间的分布, 白色虚线是电子横向速度振幅的理论值, 右侧的黑色实线代表着能量大于60 MeV的电子的vy的分布, 为了更好地展示, 其计数值做了归一化处理; (b)能量在60—70 MeV之间的电子在y-py相空间的分布

    Figure 2.  Electron phase space at $t = 5965\omega _0^{ - 1}$: (a) Energy -vy phase space, the white dashed lines denote the amplitude of vy from analytical solution,the black solid line denotes the vy distribution of electrons above 60 MeV, the counts are normalized to achieve a better illustration; (b) the y-py phase space of electrons within energy range from 60 MeV to 70 MeV.

    图 3  $t = 4965\omega _0^{ - 1}$$t = 6965\omega _0^{ - 1}$这段时间内100个被追踪的电子的能量γ以及横向能量${\epsilon_y}$的变化, 图中红色实线是根据等式(17)拟合得到的结果

    Figure 3.  The transverse energy ${\epsilon_y}$ of 100 electrons as a function of γ from $t = 4965\omega _0^{ - 1}$ to $t = 6965\omega _0^{ - 1}$. The red dashed line is the fitted result according to Eq. (17).

    图 4  (a)电子速度振幅${v_{\rm{m}}}$的三种不同展宽; (b)三种展宽下对应的vy的分布

    Figure 4.  (a) Three distributions of ${v_{\rm{m}}}$; (b) the corresponding distributions of vy.

  • [1]

    Tajima T, Dawson J 1979 Phys. Rev. Lett. 43 267Google Scholar

    [2]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [3]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F, Malka V 2004 Nature 431 541Google Scholar

    [4]

    Geddes C, Toth C, van Tilborg J, Esarey E, Schroeder C, Bruhwiler D, Nieter C, Cary J, Leemans W 2004 Nature 431 538Google Scholar

    [5]

    Mangles S, Murphy C, Najmudin Z, Thomas A, Collier J, Dangor A, Divall E, Foster P, Gallacher J, Hooker C 2004 Nature 431 535Google Scholar

    [6]

    Lu W, Tzoufras M, Joshi C, Tsung F S, Mori W B, Vieira J, Fonseca R A, Silva L O 2007 Phys. Rev. ST Accel. Beams 10 061301Google Scholar

    [7]

    Gahn C, Tsakiris G, Pukhov A, Meyer-ter-Vehn J, Pretvyler G, Thirolf P, Habs D, Witte K 1999 Phys. Rev. Lett. 83 4772Google Scholar

    [8]

    Mangles S P D, Walton B R, Tzoufras M, Najmudin Z, Clarke R J, Dangor A E, Evans R G, Fritzler S, Gopal A, Hernandez-Gomez C, Mori W B, Rozmus W, Tatarakis M, Thomas A G R, Tsung F S, Wei M S, Krushelnick K 2005 Phys. Rev. Lett. 94 245001Google Scholar

    [9]

    Willingale L, Thomas A G R, Nilson P M, Chen H, Cobble J, Craxton R S, Maksimchuk A, Norreys P A, Sangster T C, Scott R H H, Stoeckl C, Zulick C, Krushelnick K 2013 New J. Phys. 15 025023Google Scholar

    [10]

    Albert F, Lemos N, Shaw J L, Pollock B B, Goyon C, Schumaker W, Saunders A M, Marsh K A, Pak A, Ralph J E, Martins J L, Amorim L D, Falcone R W, Glenzer S H, Moody J D, Joshi C 2017 Phys. Rev. Lett. 118 134801Google Scholar

    [11]

    Lemos N, Albert F, Shaw J L, Papp D, Polanek R, King P, Milder A, Marsh K A, Pak A, Pollock B 2018 Plasma Phys. Contr. F. 60

    [12]

    Sarri G, Poder K, Cole J M, Schumaker W, Piazza A D, Reville B, Dzelzainis T, Doria D, Gizzi L A, Grittani G 2015 Nat. Commun. 6 6747Google Scholar

    [13]

    Ledingham K W D, Mckenna P, Singhal R P 2003 Science 300 1107Google Scholar

    [14]

    Qi W, Zhang X, Zhang B, He S, Zhang F, Cui B, Yu M, Dai Z, Peng X, Gu Y 2019 Phys. Plasmas 26 043103Google Scholar

    [15]

    Nilson P M, Mangles S P D, Willingale L, Kaluza M C, Thomas A G R, Tatarakis M, Clarke R J, Lancaster K L, Karsch S, Schreiber J, Najmudin Z, Dangor A E, Krushelnick K 2010 New J. Phys. 12 045014Google Scholar

    [16]

    Tsakiris G D, Gahn C, Tripathi V K 2000 Phys. Plasmas 7 3017Google Scholar

    [17]

    Pukhov A, Sheng Z M, Meyer-ter-Vehn J 1999 Phys. Plasmas 6 2847Google Scholar

    [18]

    Shaw J L, Lemos N, Amorim L D, Vafaei-Najafabadi N, Marsh K A, Tsung F S, Mori W B, Joshi C 2017 Phys. Rev. Lett. 118 064801Google Scholar

    [19]

    Gallardo González I, Ekerfelt H, Hansson M, Audet T L, Aurand B, Desforges F G, Dufrénoy S D, Persson A, Davoine X, Wahlström C G, Cros B, Lundh O 2018 New J. Phys. 20 053011Google Scholar

    [20]

    Zhang X, Khudik V N, Shvets G 2015 Phys. Rev. Lett. 114 184801Google Scholar

    [21]

    Shaw J L, Lemos N, Marsh K A, Froula D H, Joshi C 2018 Plasma Phys. Contr. F. 60 044012Google Scholar

    [22]

    Fonseca R A, Silva L O, Tsung F S, Decyk V K, Lu W, Ren C, Mori W B, Deng S, Lee S, Katsouleas T 2002 International Conference on Computational Science Amsterdam, The Netherlands, April 21−24, 2002 p342

  • [1] Zhu Han-Chen, Zhou Chu-Liang, Li Xiao-Feng, Tian Ye, Li Ru-Xin. Over-30-GeV intense laser phase-locked direct electron acceleration. Acta Physica Sinica, 2024, 73(19): 195201. doi: 10.7498/aps.73.20240652
    [2] Jiang Kang-Nan, Feng Ke, Ke Lin-Tong, Yu Chang-Hai, Zhang Zhi-Jun, Qin Zhi-Yong, Liu Jian-Sheng, Wang Wen-Tao, Li Ru-Xin. High-quality laser wakefield electron accelerator. Acta Physica Sinica, 2021, 70(8): 084103. doi: 10.7498/aps.70.20201993
    [3] Wang Tong, Wang Xiao-Fang. An analytic approach for density gradient injection in laser wake field acceleration. Acta Physica Sinica, 2016, 65(4): 044102. doi: 10.7498/aps.65.044102
    [4] Yin Chuan-Lei, Wang Wei-Min, Liao Guo-Qian, Li Meng-Chao, Li Yu-Tong, Zhang Jie. Ultrahigh-energy electron beam generated by ultra-intense circularly polarized laser pulses. Acta Physica Sinica, 2015, 64(14): 144102. doi: 10.7498/aps.64.144102
    [5] Liu Ming-Wei, Gong Shun-Feng, Li Jin, Jiang Chun-Lei, Zhang Yu-Tao, Zhou Bing-Ju. Non-resonant direct laser acceleration in underdense plasma channels. Acta Physica Sinica, 2015, 64(14): 145201. doi: 10.7498/aps.64.145201
    [6] Dong Ye, Dong Zhi-Wei, Yang Wen-Yuan, Zhou Qian-Hong, Zhou Hai-Jing. Effects of transverse electromagnetic field distribution in the multipactor discharge on dielectric window surface. Acta Physica Sinica, 2013, 62(19): 197901. doi: 10.7498/aps.62.197901
    [7] Zhang Guo-Bo, Ma Yan-Yun, Zou De-Bin, Zhuo Hong-Bin, Shao Fu-Qiu, Yang Xiao-Hu, Ge Zhe-Yi, Yu Tong-Pu, Tian Cheng-Lin, Ouyang Jian-Ming, Zhao Na. Effects of pulse transverse profile on electron bow-wave injection of electrons in laser wakefield acceleration. Acta Physica Sinica, 2013, 62(12): 125205. doi: 10.7498/aps.62.125205
    [8] Xiao Yuan, Wang Xiao-Fang, Teng Jian, Chen Xiao-Hu, Chen Yuan, Hong Wei. Simulation study of radiography using laser-produced electron beam. Acta Physica Sinica, 2012, 61(23): 234102. doi: 10.7498/aps.61.234102
    [9] Wang Guang-Hui, Wang Xiao-Fang, Dong Ke-Gong. Ultra-short ultra-intense laser guiding and its influence on electron acceleration. Acta Physica Sinica, 2012, 61(16): 165201. doi: 10.7498/aps.61.165201
    [10] Xia Zhi-Lin. The laser induced electronic acceleration process in nanostructured dielectric. Acta Physica Sinica, 2011, 60(5): 056804. doi: 10.7498/aps.60.056804
    [11] Huang Shi-Hua, Wu Feng-Min. Electron acceleration by a focused laser pulse in static electric field. Acta Physica Sinica, 2008, 57(12): 7680-7684. doi: 10.7498/aps.57.7680
    [12] Dong Xiao-Gang, Sheng Zheng-Ming, Chen Min, Zhang Jie. Numerical simulation of acceleration and radiation of surface electrons in the interaction of intense laser pulses with a solid target. Acta Physica Sinica, 2008, 57(12): 7423-7429. doi: 10.7498/aps.57.7423
    [13] Zhao Zhi-Guo, Lü Bai-Da. Direct acceleration of electrons by a Laguerre-Gaussian laser beam in vacuum. Acta Physica Sinica, 2006, 55(4): 1798-1802. doi: 10.7498/aps.55.1798
    [14] Tian You-Wei, Yu Wei, Lu Pei-Xiang, He Feng, Ma Fa-Jun, Xu Han, Jing Guo-Liang, Qian Lie-Jia. Electron capture and violent acceleration by a tightly focused ultra-short ultra-intense laser pulse in vacuum. Acta Physica Sinica, 2005, 54(9): 4208-4212. doi: 10.7498/aps.54.4208
    [15] He Feng, Yu Wei, Xu Han, Lu Pei-Xiang. Acceleration of a pre-accelerated electron by an ultra-short and ultra-intense laser pulse in vacuum. Acta Physica Sinica, 2005, 54(9): 4203-4207. doi: 10.7498/aps.54.4203
    [16] He Feng, Yu Wei, Lu Pei-Xiang, Yuan Xiao, Liu Jing-Ru. Electron acceleration by a tightly focused femtosecond laser beam in vacuum. Acta Physica Sinica, 2004, 53(1): 165-170. doi: 10.7498/aps.53.165
    [17] SHAO LEIL, HUO YU-KUN, WANG PING-XIAO, KONG QING, YUAN XIANG-QUN, FENG LIANG. EFFECT OF FIELD POLARIZATION DIRECTION ON ACCELERATING ELECTRON WITH EXTRA-INTENSE STATIONARY LASER BEAM. Acta Physica Sinica, 2001, 50(7): 1284-1289. doi: 10.7498/aps.50.1284
    [18] CHANG WEN-WEI, ZHANG LI-FU, SHAO FU-QIU. LASER PLASMA WAVE ELECTRON ACCELERATORS. Acta Physica Sinica, 1991, 40(2): 182-189. doi: 10.7498/aps.40.182
    [19] ZHU SHI-TONG, SHEN WEN-DA, DENG XI-MING, WANG ZHI-JIANG. A GENERAL COVARIANT DERIVATION OF ELECTRON ENERGY GAIN IN A LASER ACCELERATOR. Acta Physica Sinica, 1989, 38(4): 559-566. doi: 10.7498/aps.38.559
    [20] ZHUANG JIE-JIA. AN INVERSE CHERENKOV FOCUSING LASER ACCELERATOR. Acta Physica Sinica, 1984, 33(9): 1255-1260. doi: 10.7498/aps.33.1255
Metrics
  • Abstract views:  7863
  • PDF Downloads:  104
  • Cited By: 0
Publishing process
  • Received Date:  18 July 2019
  • Accepted Date:  23 August 2019
  • Available Online:  01 October 2019
  • Published Online:  05 October 2019

/

返回文章
返回