Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Laser driven electron acceleration from dual-plane composite targets for space radiation applications

ZHONG Peilin JIANG Yueqian ZI Ming LI Xiangcheng ZHAO Na DENG Yanqing WU Tong YU Runzhou ZHANG Guobo YANG Xiaohu MA Yanyun

Citation:

Laser driven electron acceleration from dual-plane composite targets for space radiation applications

ZHONG Peilin, JIANG Yueqian, ZI Ming, LI Xiangcheng, ZHAO Na, DENG Yanqing, WU Tong, YU Runzhou, ZHANG Guobo, YANG Xiaohu, MA Yanyun
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Laser driven electron beam has important application value in the field of space radiation environment simulation. However, due to the shortcomings of poor spectrum tunability and high laser energy of the electron beam generated by laser direct irradiation of high-density solid targets, its wide application is limited. In this work, a scheme is proposed to simulate the orbital electron radiation in near-Earth space by using laser driven dual-plane composite target electron acceleration. It is found that the high-density solid target Ⅱ can provide a large number of low energy electrons, while the vertical plane target Ⅰ located in the front surface of target II can provide a small number of high energy electrons, which makes the electron energy spectrum very close to that of the space radiation environment. In order to evaluate the similarity between the generated energy spectrum and the space radiation spectrum, a method of evaluating the similarity of energy spectra is proposed, which can describe the local similarity and the global similarity of the energy spectra. For vertical plane target Ⅰ with low density, the electron acceleration is dominated by the laser ponderomotive acceleration that generates a half-wavelength oscillation. As the density increases, the electron acceleration gradually transitions from the laser ponderomotive acceleration to the surface ponderomotive acceleration, and the electron beam energy spectrum is modulated effectively. Meanwhile, the electron temperature of the generated electron beam is linearly related to the length and density of the target Ⅰ, and the optimal target parameters are obtained by the Bayesian optimization, and the generated electron beam is much better matched to the space radiation environment. Compared with the scheme of laser driven single-plane target electron acceleration, the proposed scheme has better tunability of energy spectrum and lower requirement of laser intensity. The results provide a theoretical reference for the experimental study of simulating space radiation environments in different orbitals by using laser-driven electron beams.
  • 图 1  激光驱动双平面复合靶电子加速示意图

    Figure 1.  Schematic of laser driven electron acceleration from dual-plane composite target.

    图 2  (a) $t = 48\;{T_{0}}$时, 不同密度垂直平面靶Ⅰ情况和典型轨道的电子能谱分布; (b) 靶Ⅰ密度为$0.1\;{n_{\text{c}}}$时, 利用R和RNS方法评价模拟结果与GPS轨道电子能谱匹配程度的结果(RNS评价值大于0.8的点标记为红色)

    Figure 2.  (a) Electron energy spectrum distributions of typical orbit and the perpendicular plane target Ⅰ with different densities at $t = 48\;{T_{0}}$; (b) the evaluation results obtained by R and RNS method between simulation results and the GPS orbital electron flux when the density of target Ⅰ is $0.1\;{n_{\text{c}}}$ (dots with RNS greater than 0.8 are marked in red).

    图 3  $ t = 18{T_0} $(第1行)和$t = 34{T_0}$时刻(第2行), 不同密度垂直平面靶Ⅰ的电子密度空间分布 (a), (b) $0.05{n_{\text{c}}}$; (c), (d) $0.1{n_{\text{c}}}$; (e), (f) $10{n_{\text{c}}}$

    Figure 3.  Spatial distributions of the electron density of the perpendicular plane target I with $0.05{n_{\text{c}}}$ (a), (b); $0.1{n_{\text{c}}}$ (c), (d); $10{n_{\text{c}}}$ (e), (f) at $ t = 18{T_0} $ (the first row) and $t = 34{T_0}$ (the second row) .

    图 4  $t = 48\;{T_{0}}$时刻, 高能端电子温度(蓝线)与电子最大能量(红线)随靶Ⅰ密度的演化(l = 3 μm)

    Figure 4.  Evolution of electron temperature (blue line) and the maximum electron energy (red line) for different densities of target Ⅰ at $t = 48\;{T_{0}}$ (l = 3 μm).

    图 5  $t = 48\;{T_{0}}$时刻, 不同密度靶Ⅰ的高能端电子温度(蓝线)与电子最大能量(红线)随靶Ⅰ长度的演化 (a) ne1 = 0.05nc; (b) ne1 = 0.1nc; (c) ne1 = 0.3nc; (d) ne1 = 0.5nc

    Figure 5.  Evolution of the electron temperature (blue line) and the maximum electron energy (red line) for different lengths of target Ⅰ at $t = 48\;{T_{0}}$: (a) ne1 = 0.05nc; (b) ne1 = 0.1nc; (c) ne1 = 0.3nc; (d) ne1 = 0.5nc.

    图 6  电子束能谱的低能端电子温度Te1和高能端电子温度Te2随靶Ⅰ密度${n_{{\text{e}}1}}$和长度$l$演化, 蓝色散点为靶Ⅰ密度分别为0.05nc, 0.1nc, 0.3nc, 0.5nc, 1nc与长度分别为$1\;{\text{μ m}}$, $3\;{\text{μ m}}$, $5\;{\text{μ m}}$, $8\;{\text{μ m}}$时每种情况的20组数据, 红线为拟合线性方程

    Figure 6.  Evolution of the electron temperature Te1 at the low energy and Te2 at the high energy evolve with the density and length of the target I. The blue scatter dots represent 20 sets of data with target Ⅰ densities of 0.05nc, 0.1nc, 0.3nc, 0.5nc, 1nc and lengths of $1\;{\text{μ m}}$, $3\;{\text{μ m}}$, $5\;{\text{μ m}}$, $8\;{\text{μ m}}$, respectively, and the red line represents the fitted linear equation.

    图 7  贝叶斯优化参数后的电子束能谱及RNS和R评价方法结果

    Figure 7.  Electron beam energy spectrum and the evaluation results of RNS and R after Bayesian optimization.

  • [1]

    Summeers D, Stone S 2022 J. Geophys. Res. Space Phys. 127 A030698

    [2]

    黄建国, 韩建伟 2010 物理学报 59 2907Google Scholar

    Huang J G, Han J W 2010 Acta Phys. Sin. 59 2907Google Scholar

    [3]

    Heynderickx D 2002 Int. J. Mod. Phys. A. 17 1675Google Scholar

    [4]

    Ginet P G, Brien T P O, Huston S L, Johnston W R, Guild T B, Friedel R, Lindstrom C D, Roth C J, Whelan P, Quinn R A, Madden D, Morley S, Su Y J 2013 Space Sci Rev. 179 579Google Scholar

    [5]

    陈伟, 杨海亮, 郭晓强, 姚志斌, 丁李利, 王祖军, 王晨辉, 王忠明, 丛培天 2017 科学通报 62 978

    Chen W, Yang H L, Guo X Q, Yao Z B, Ding L L, Wang Z J, Wang C H, Wang Z M, Cong P T 2017 C. S. B. 62 978

    [6]

    Bengtson M T, Hooper C T, Hoffmann R C, Engelhart D P, Murray V J, Ferguson D C 2022 J Astronaut Sci. 69 149Google Scholar

    [7]

    Hidding B, Königstein T, Willi O, Rosenzweig J B, Nakajima K, Pretzler G 2011 Ncucl Instrum Meth A. 636 31Google Scholar

    [8]

    Königstein T, Karger O, Pretzler G, Rosenzweig J B, Hidding B 2012 J Plasma Phys. 78 383Google Scholar

    [9]

    Hidding B, Karer O, Königstein T, Pretzler G, Manahan G G, Mckenna P, Gray R, Wilson R, Wiggins S M, Welsh G H, Beaton A, Delinikolas P, Jaroszynski D A, Rosenzweig J B, Karmakar A, Ferlet-Cavrois V, Cosrantino A, Muschitiello M, Daly E 2017 Sci. Rep. 7 42354Google Scholar

    [10]

    Budrigă O, Ticos C M 2020 Plasma Phys. Control. Fusion 62 124001Google Scholar

    [11]

    Li X F, Gibbon P, Hützen A, Büscher M, Weng S M, Chen M, Sheng Z M 2021 Phy. Rev. Lett. 104 015216

    [12]

    Liu B, Shi M Y, Zepf M, Lei B F, Seipt D 2022 Phys. Rev. Lett. 129 274801Google Scholar

    [13]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar

    [14]

    Zhang G B, Chen M, Zou D B, Zhu X Z, Li B Y, Yang X H, Liu F, Yu T P, Ma Y Y, Sheng Z M 2022 Phys. Rev. Appl. 17 024051Google Scholar

    [15]

    Ke L T, Feng K, Wang W T, Qin Z Y, Yu C H, Wu Y, Chen Y, Qi R, Zhang Z J, Xu Y, Yang X J, Leng Y X, Liu J S, Li R X, Xu Z Z 2021 Phys. Rev. Lett. 126 214801Google Scholar

    [16]

    Shou Y R, Wang P J, Seong G L, Yong J R, Hwang W L, Jin W Y, Jae H S, Seong K L, Pan Z, Kong D F, Mei Z S, Liu J B, Xu S R, Deng Z G, Zhou W M, Tajima T, Choi I W, Yan X Q, Chang H N, Ma W J 2023 Nat. Photonics. 17 137Google Scholar

    [17]

    Carbajo S, Nanni E A, Wong L J, Moriena G, Keathley P D, Laurent G, Miller R J D, Kärtner F X 2016 Phys. Rev. Accel. Beams. 19 021303Google Scholar

    [18]

    Babjak R, Willingale L, Arefiev A, Vranic M 2024 Phys. Rev. Lett. 132 125001.Google Scholar

    [19]

    Yu W, Bychenkov V, Sentoku Y, Yu M Y, Sheng Z M, Mima K 2000 Phy. Rev. Lett. 85 570Google Scholar

    [20]

    He F, Yu W, Lu P X, Xu H, Qian L J, Shen B F, Yuan X, Li R X, Xu Z Z 2003 Phy. Rev. E. 68 046407Google Scholar

    [21]

    刘明伟, 龚顺风, 李劲, 姜春蕾, 张禹涛, 周并举 2015 物理学报 64 145201Google Scholar

    Liu M W, Gong S F, Jin L, Jiang C L, Zhang Y T, Zhou B J 2015 Acta Phys. Sin. 64 145201Google Scholar

    [22]

    Kruer W L, Estabrook 1985 Phys. Fluids. 28 430Google Scholar

    [23]

    Lefebvre E, Bonnaud G 1997 Phy. Rev. E. 55 1Google Scholar

    [24]

    静国梁, 余玮, 李英骏, 赵诗华, 钱列加, 田友伟, 刘丙辰 2006 物理学报 55 3475Google Scholar

    Jing G L, Yu W, Li Y J, Zhao S H, Qian L J, Tian Y W, Liu B C 2006 Acta Phys. Sin. 55 3475Google Scholar

    [25]

    Grimes M K, Rundquist A R, Lee Y S, Downer M C 1999 Phy. Rev. Lett. 82 4010Google Scholar

    [26]

    Wang W T, Liu J S, Cai Y, Wang C, Liu L, Xia Z Q, Deng A H, Xu Y, Leng Y X, Li R X, Xu Z Z 2010 Phys. Plasmas 17 023108Google Scholar

    [27]

    Chopimeau L, Leblanc, Blaclard, Denoeud A, Thévenet M, Vay J-L, Bonnaud G, Martin Ph, Vincenti H, Quéré F 2019 Phys. Rev. E. 9 011050

    [28]

    Haines M G, Wei M S, Beg F N, Stephens R B 2009 Phy. Rev. Lett. 102 045008Google Scholar

    [29]

    Ma W J, Kim Jong, Yu J Q, Choi W I, Singh P K, Lee Hwang W L, Sung J H, Seong K L, Lin C, Liao Q, Zhu J G, Lu H Y, Liu B, Wang H Y, Xu R F, He X T, Chen J E, Zepf M, Schreiber J, Yan X Q, Nam C H 2019 Phy. Rev. Lett. 122 014803Google Scholar

    [30]

    Lad A D, Mishima Y, Singh P K, Li B Y, Adak A, Chatterjee G, Brijesh P, Dalui M, Inoue M, Jha J, Tata S, Trivilram M, Krishnamurthy M, Chen M, Sheng Z M, Tanaka K A, Kumar R G, Habara H 2022 Sci. Rep. 12 16818Google Scholar

    [31]

    Shen X F, Pukhov A, Qiao B 2023 Plasma Phys. Control. Fusion 65 034005Google Scholar

    [32]

    Yang X H, Dieckmann M E, Sarri G, Borghesi M 2012 Phys. Plasmas 19 113110[33] Zhang G B, Ma Y Y, Han X, Nasr A M, Yang X H, Chen M, Yu T P, Zou D B, Liu J X, Yan J F, Zhuo H B, Gan L F, Tian L C, Shao F Q, Yin Y, Kawata S 2015 Phys. Plasmas 22 0831110

    [33]

    Shou Y R, Wang P J, Lee S G, Rhee Y J, Lee H W, Yoon J W, Sung J H, Lee S K, Pan Z, Kong D, Mei Z S, Liu J B, Xu S R, Deng Z G, Zhou W M, Tajima T, Choi I W, Yan X Q, Nam C H, Ma W J 2023 Nat. Photonics. 117 137

    [34]

    Zhou L, Yang Z B, Yang J, Wu Y G, Wei D S 2017 Chem. Phys. Lett. 677 7Google Scholar

    [35]

    Fronya A A, Borisenko N G, Sahakyan A T, Puzyrev V N, Starodub A N, Yakushev O F 2019 Phys. Atom. Nuclei. 82 S1063778819100090

    [36]

    Kluge T, Cowan T, Debus A, Schramm U, Zeil K, Bussmann M 2011 Phys. Rev. Lett. 107 205003Google Scholar

    [37]

    Hodson T O 2022 Geosci Model Dev. 15 5481Google Scholar

    [38]

    Staerk C, Klinkhammer Hannah, Wistuba T, Maj C Mayr A 2024 BMC Med Genomics. 17 132Google Scholar

    [39]

    Ma Y Y, Sheng Z S, Li Y T, Chang W W, Yuan X H, Chen M, Wu H C, Zheng J, Zhang J 2006 Phys. Plasmas 13 110702Google Scholar

    [40]

    Marini S, Grech M, Kleij P S, Raynaud M, Riconda C 2023 Phys. Rev. Res. 5 013115Google Scholar

    [41]

    Vladisavlevici I M, Vizman D, d'Humières E 2023 Plasma Phys. Control. Fusion 65 045012Google Scholar

    [42]

    Box G E P 1953 Biometrika 40 318Google Scholar

    [43]

    Diessner M, O’Connor J, Wynn A, Laizet S, Guan Y, Wilson K, Whalley R D 2022 Front. Appl. Math. Stat. 08 1076296Google Scholar

  • [1] Wei Liu-Lei, Cai Hong-Bo, Zhang Wen-Shuai, Tian Jian-Min, Zhang En-Hao, Xiong Jun, Zhu Shao-Ping. Enhancement of high-energy electron yield by interaction of ultra-intense laser pulses with micro-structured foam target. Acta Physica Sinica, doi: 10.7498/aps.68.20182291
    [2] Zhang Zhi-Meng, Zhang Bo, Wu Feng-Juan, Hong Wei, Teng Jian, He Shu-Kai, Gu Yu-Qiu. Plasma density effect on backward Raman laser amplification. Acta Physica Sinica, doi: 10.7498/aps.64.105201
    [3] Zhang Kai, Zhong Jia-Yong, Pei Xiao-Xing, Li Yu-Tong, Sakawa Youichi, Wei Hui-Gang, Yuan Da-Wei, Li Fang, Han Bo, Wang Chen, He Hao, Yin Chuan-Lei, Liao Guo-Qian, Fang Yuan, Yang Su, Yuan Xiao-Hui, Liang Gui-Yun, Wang Fei-Lu, Zhu Jian-Qiang, Ding Yong-Kun, Zhang Jie, Zhao Gang. Measurement of jet evolution and electron energy spectrum during the process of laser-driven magnetic reconnection. Acta Physica Sinica, doi: 10.7498/aps.64.165201
    [4] Yin Chuan-Lei, Wang Wei-Min, Liao Guo-Qian, Li Meng-Chao, Li Yu-Tong, Zhang Jie. Ultrahigh-energy electron beam generated by ultra-intense circularly polarized laser pulses. Acta Physica Sinica, doi: 10.7498/aps.64.144102
    [5] Mu Jie, Sheng Zheng-Ming, Zheng Jun, Zhang Jie. Numerical studies on intense laser-generated relativistic high-energy electrons via a thin cone target. Acta Physica Sinica, doi: 10.7498/aps.62.135202
    [6] Wang Guang-Hui, Wang Xiao-Fang, Dong Ke-Gong. Ultra-short ultra-intense laser guiding and its influence on electron acceleration. Acta Physica Sinica, doi: 10.7498/aps.61.165201
    [7] Xia Zhi-Lin. The laser induced electronic acceleration process in nanostructured dielectric. Acta Physica Sinica, doi: 10.7498/aps.60.056804
    [8] Kan Peng-Zhi, Zhao Su-Ling, Xu Zheng, Kong Chao, Wang Da-Wei, Yan Yue. The applications of ZnO nanorods in poly [2-methoxy-5-(2-ethyl-hexyloxy)-1, 4-phenylene vinylene]solid state cathodoluminescence device. Acta Physica Sinica, doi: 10.7498/aps.59.616
    [9] Zhang Bao-Han, Wang Xiao-Fang, Dong Ke-Gong, Gu Yu-Qiu, Zhu Bin, Wu Yu-Chi, Cao Lei-Feng, He Ying-Ling, Liu Hong-Jie, Hong Wei, Zhou Wei-Min, Zhao Zong-Qing, Jiao Chun-Ye, Wen Xian-Lun. Experimental generation of 58 MeV quasi-monoenergetic electron beam by ultra-intense femto-second laser wakefield. Acta Physica Sinica, doi: 10.7498/aps.59.8733
    [10] Zhu Bin, Gu Yu-Qiu, Wang Yu-Xiao, Liu Hong-Jie, Wu Yu-Chi, Wang Lei, Wang Jian, Wen Xian-Lun, Jiao Chun-Ye, Teng Jian, He Ying-Ling. Observation of macroscopic postsolitons in ultrashort ultraintense laser-plasma interaction. Acta Physica Sinica, doi: 10.7498/aps.58.1100
    [11] Monte Carlo simulation of Kα source produced by ultrashort and ultrahigh laser interaction with Cu target. Acta Physica Sinica, doi: 10.7498/aps.56.7127
    [12] Yuan Xiao-Hui, Li Yu-Tong, Xu Miao-Hua, Yu Quan-Zhi, Wang Shou-Jun, Zhang Jie, Zhao Wei, Wang Guang-Chang, Wen Xian-Lun, Jiao Chun-Ye, He Ying-Ling, Zhang Shuang-Gen, Wang Xiang-Xian, Huang Wen-Zhong, Gu Yu-Qiu. Observation of the rear-side coherent transition radiation generated by hot electrons. Acta Physica Sinica, doi: 10.7498/aps.55.5362
    [13] Li Kun, Li Yu-Tong, Zhang Jun, Yuan Xiao-Hui, Xu Miao-Hua, Wang Zhao-Hua, Zhang Jie. Fast electrons generated from Al targets irradiated by polarized laser pulses. Acta Physica Sinica, doi: 10.7498/aps.55.5909
    [14] Chen Min, Sheng Zheng-Ming, Zheng Jun, Zhang Jie. Numerical simulation of acceleration of electrons and ions in the interaction of intense laser pulses with dense gaseous targets. Acta Physica Sinica, doi: 10.7498/aps.55.2381
    [15] He Feng, Yu Wei, Xu Han, Lu Pei-Xiang. Acceleration of a pre-accelerated electron by an ultra-short and ultra-intense laser pulse in vacuum. Acta Physica Sinica, doi: 10.7498/aps.54.4203
    [16] Tian You-Wei, Yu Wei, Lu Pei-Xiang, He Feng, Ma Fa-Jun, Xu Han, Jing Guo-Liang, Qian Lie-Jia. Electron capture and violent acceleration by a tightly focused ultra-short ultra-intense laser pulse in vacuum. Acta Physica Sinica, doi: 10.7498/aps.54.4208
    [17] He Feng, Yu Wei, Lu Pei-Xiang, Yuan Xiao, Liu Jing-Ru. Electron acceleration by a tightly focused femtosecond laser beam in vacuum. Acta Physica Sinica, doi: 10.7498/aps.53.165
    [18] Zhu Peng-Fei, Qian Lie-Jia, Xue Shao-Lin, Lin Zun-Qi. Numerical studies of characteristics and the design of 1PW optical parametric chirped pulse amplifier for the “Shenguang-Ⅱ” facility. Acta Physica Sinica, doi: 10.7498/aps.52.587
    [19] LIU HONG-JUN, CHEN GUO-FU, ZHAO WEI, WANG YI-SHAN, ZHAO SHANG-HONG. OPTIMIZED DESIGN OF A SYSTEM OF GENERATING TERAWATT LASER PULSES BY USE OF OPTICAL PARAMETRIC CHIRPED PULSE AMPLIFICATION. Acta Physica Sinica, doi: 10.7498/aps.50.1717
    [20] LIU JIAN-SHENG, LI RU-XIN, ZHU PIN-PIN, XU ZHI-ZHAN, LIU JING-RU. DYNAMICS OF LARGE-SIZE ATOMIC CLUSTERS IN ULTRA-SHORT HIGH-INTENSITY LASER PULSES. Acta Physica Sinica, doi: 10.7498/aps.50.1121
Metrics
  • Abstract views:  378
  • PDF Downloads:  15
  • Cited By: 0
Publishing process
  • Received Date:  26 November 2024
  • Accepted Date:  01 January 2025
  • Available Online:  23 January 2025

/

返回文章
返回