Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical calculation of dynamic polarizability of 4s2 1S0—4s4p 3P0 transition for Ga+ ion

LOU Zongshuai WANG Yuefei KANG Boyi LI Rui ZHANG Wenjun WEI Yuanfei BU Minglu CAI Yiyu

Citation:

Theoretical calculation of dynamic polarizability of 4s2 1S0—4s4p 3P0 transition for Ga+ ion

LOU Zongshuai, WANG Yuefei, KANG Boyi, LI Rui, ZHANG Wenjun, WEI Yuanfei, BU Minglu, CAI Yiyu
cstr: 32037.14.aps.74.20250125
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The transition of Ga+ ions from 4s2 1S0 to 4s4p 3P0 has advantages such as a high quality factor and a small motional frequency shift, making it suitable as a reference for precision measurement experiments like optical clocks. Calculating the dynamic polarizability of 4s2 1S0—4s4p 3P0 transition for Ga+ ion is of great significance for exploring the potential applications of the Ga+ ion in the field of quantum precision measurement and for testing atomic and molecular structure theories. In this paper, the dynamic polarizability of the Ga+ ion 4s2 1S0—4s4p 3P0 transition is theoretically calculated using the relativistic configuration interaction plus many-body perturbation (RCI+MBPT) method. The “tune-out” wavelengths for the 4s2 1S0 state and the 4s4p 3P0 state, as well as the “magic” wavelength of the 4s2 1S0—4s4p 3P0 transition, are also computed. It is observed that the resonant lines situated near a certain “turn-out” and “magic” wavelength can make dominant contributions to the polarizability, while the remaining resonant lines generally contribute the least. These “tune-out” and “magic” wavelengths provide theoretical guidance for precise measurements, which is important for studying the atomic structure of Ga+ ions. The accurate determination of the difference in static polarizability between the 4s2 1S0 and 4s4p 3P0 states is of significant importance. Additionally, based on the “polarizability scaling” method, this work also discusses how the theoretical calculation errors in static polarizability measurements vary with wavelength, which provides theoretical guidance for further determining the static polarizability of the 4s2 1S0 and 4s4p 3P0 states with high precision. This is crucial for minimizing the uncertainty of the blackbody radiation (BBR) frequency shift in Ga+ optical clock and suppressing the systematic uncertainty.
      Corresponding author: ZHANG Wenjun, 20210018@wfu.edu.cn ; WEI Yuanfei, weiyuanfei@must.edu.mo ; CAI Yiyu, yycai@must.edu.mo
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12304151, 12404421), the Science and Technology Development Fund, Macao SAR (Grant No. 0024/2024/RIB1), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2022QA085), and the Innovation and Entrepreneurship Training Program for College Students of Weifang University, China (Grant No. S202411067021).
    [1]

    Safronova M S, Kozlov M G, Clark C W 2011 Phys. Rev. Lett. 107 143006Google Scholar

    [2]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201Google Scholar

    [3]

    Cui K F, Chao S J, Sun C L, Wang S M, Zhang P, Wei Y F, Yuan J B, Cao J, Shu H L, Huang X R 2022 Eur. Phys. J. D 76 140Google Scholar

    [4]

    Keller J, Burgermeister T, Kalincev D, Didier A, Kulosa A P, Nordmann T, Kiethe J, Mehlstäubler T E 2019 Phys. Rev. A 99 013405Google Scholar

    [5]

    Cheng Y J, Mitroy J 2013 J. Phys. B: At. Mol. Opt. Phys. 46 185004Google Scholar

    [6]

    Tayal S S 1991 Phys. Scr. 43 270Google Scholar

    [7]

    魏远飞, 唐志明, 李承斌, 黄学人 2024 物理学报 73 103103Google Scholar

    Wei Y F, Tang Z M, Li C B, Huang X R 2024 Acta Phys. Sin. 73 103103Google Scholar

    [8]

    Wei, Y F, Chao S J, Cui K F, Li C B, Yu S C, Zhang H, Shu H L, Cao J, Huang X R 2024 Phys. Rev. Lett. 133 033001Google Scholar

    [9]

    Ma Z Y, Deng K, Wang Z Y, Wei W Z, Hao P, Zhang H X, Pang L R, Wang B, Wu F F, Liu H L, Yuan W H, Chang J L, Zhang J X, Wu Q Y, Zhang J, Lu Z H 2024 Phys. Rev. Appl. 21 044017Google Scholar

    [10]

    Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001Google Scholar

    [11]

    Mitroy J, Safronova M S, Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001Google Scholar

    [12]

    Porsev S G, Derevianko A 2006 Phys. Rev. A 74 020502(RGoogle Scholar

    [13]

    Zhang P, Cao J, Yuan J B, Liu D X, Yuan Y, Wei Y F, Shu H L, Huang X R 2021 Metrologia 58 035001Google Scholar

    [14]

    Arora B, Nandy D K, Sahoo B K 2012 Phys. Rev. A 85 012506Google Scholar

    [15]

    Wei Y F, Tang Z M, Li C B, Yang Y, Zou Y M, Cui K F, Huang X R 2022 Chin. Phys. B 31 083102Google Scholar

    [16]

    Liu P L, Huang Y, Bian W, Shao H, Guan H, Tang Y B, Li C B, Mitroy J, Gao K L 2015 Phys. Rev. Lett. 114 223001Google Scholar

    [17]

    Huang Y, Wang M, Chen Z, Li C B, Zhang H Q, Zhang B L, Tang L Y, Shi T Y, Guan H, Gao K L 2024 New J. Phys. 26 043021Google Scholar

    [18]

    Tang Y B, Qiao H X, Shi T Y, Mitroy J 2013 Phys. Rev. A 87 042517Google Scholar

    [19]

    Holmgren W F, Trubko R, Hromada I, Cronin A D 2012 Phys. Rev. Lett. 109 243004Google Scholar

    [20]

    Herold C D, Vaidya V D, Li X, Rolston S L, Porto J V, Safronova M S 2012 Phys. Rev. Lett. 109 243003Google Scholar

    [21]

    Safronova M S, Zuhrianda Z, Safronova U I, Clark C W 2015 Phys. Rev. A 92 040501(RGoogle Scholar

    [22]

    Mitroy J, Zhang J Y, Bromley M W J, Rollin K G 2009 Eur. Phys. J. D 53 15Google Scholar

    [23]

    Kallay M, Nataraj H S, Sahoo B K, Das B P, Visscher L 2011 Phys. Rev. A 83 030503Google Scholar

    [24]

    Yu Y M, Suo B B, Fan H 2013 Phys. Rev. A 88 052518Google Scholar

    [25]

    Dzuba V A, Flambaum V V, Kozlov M G 1996 Phys. Rev. A 54 3948Google Scholar

    [26]

    Kozlov M G, Porsev S G, Safronova M S, Tupitsyn I I 2015 Comput. Phys. Commun. 195 199Google Scholar

    [27]

    Tang Z M, Yu Y M, Jiang J, Dong C Z 2018 J. Phys. B: At. Mol. Opt. Phys. 51 125002Google Scholar

    [28]

    Cheng Y J, Jiang J, Mitroy J 2013 Phys. Rev. A 88 022511Google Scholar

    [29]

    Jiang J, Tang L Y, Mitroy J 2013 Phys. Rev. A 87 032518Google Scholar

    [30]

    Yu W W, Yu R M, Cheng Y J 2015 Chin. Phys. Lett. 32 123102Google Scholar

    [31]

    Wu L, Wang X, Wang T, Jiang J, Dong C Z 2023 New J. Phys. 25 043011Google Scholar

    [32]

    Tang Z M, Wei Y F, Sahoo B K, Li C B, Yang Y, Zou Y M, Huang X R 2024 Phys. Rev. A 110 043108Google Scholar

    [33]

    Hao L H, Liu J J 2018 J. Appl. Spectrosc 85 730Google Scholar

    [34]

    Kramida A, Ralchenko Yu, Reader J, NIST ASD Team 2024 NIST Atomic Spectra Database (ver. 5.12) [Online]. Available: https://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg, MD

    [35]

    Jonsson P, Andersson M, Sabel H, Brage T 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1813Google Scholar

    [36]

    Isberg B, Litzen U 1985 Phys. Scr. 31 533Google Scholar

    [37]

    Victor G A, Taylor W R 1983 At. Data Nucl. Data Tables 28 107Google Scholar

    [38]

    Chou H, Chi H, Huang K 1994 Phys. Rev. A 49 2394Google Scholar

    [39]

    Fischer C F, Hansen J E 1978 Phys. Rev. A 17 1956Google Scholar

    [40]

    Andersen T, Eriksen P, Poulsen O, Ramanujam P S 1979 Phys. Rev. A 20 2621Google Scholar

    [41]

    Fischer C F 2009 Phys. Scr. T134 014019Google Scholar

    [42]

    Ekman J, Godefroid M R, Hartman H 2014 Atoms 2 215Google Scholar

    [43]

    Yu W W, Yu R M, Cheng Y J, Zhou Y J 2016 Chin. Phys. B 25 023101Google Scholar

  • 图 1  Ga+离子的4s2 1S0态和4s4p 3P0态的动态极化率曲线

    Figure 1.  Dynamic polarizabilities α(ω) of the 4s2 1S0 and 4s4p 3P0 states in Ga+ ion.

    图 2  Ga+离子的4s2 1S0态和4s4p 3P0态静态极化率之差的理论计算误差随波长变化曲线

    Figure 2.  Theoretical calculation error of the difference in static polarizability between the 4s2 1S0 state and the 4s4p 3P0 state of Ga+ ion as a function of wavelength.

    表 1  Ga+离子的最低的23个能级的能量值 (cm–1), 第1行数值为基态的绝对能量值, 其他行数值为激发态相对于基态的激发能

    Table 1.  Energies of 23 lowest energy levels of Ga+ ion (cm–1), the value in the first row represents the absolute energy of the ground state, while the values in the other rows represent the excitation energies of the excited states relative to the ground state.

    State RCI RCI+MBPT NIST Diff./% Refs.
    4s2 1S0 396252.81 412181.94 413285.38 –0.27 413285.41CICP [5]
    4s4p 3P0 43174.90 47338.76 47367.55 –0.060 47367.57 CICP [5]; 47032 MCDHF [35]; 47368Expt [36]
    4s4p 3P1 43584.84 47792.83 47814.114 –0.044 47469 MCDHF [35]; 47814 Expt [36]
    4s4p 1P1 68389.17 70709.25 70701.427 0.011 70701.42 CICP [5]; 70455 MCDHF [35]; 70701 Expt [36]
    4s5s 3S1 96653.91 102623.02 102944.595 –0.31 100749.90 CICP [5]; 102665 MCDHF [35]; 102945 Expt [36]
    4s4d 3D1 106905.35 113471.29 113815.885 –0.30 113815.87 CICP [5]; 113305 MCDHF [35]; 113816 Expt [36]
    4p2 3P1 109300.03 115272.94 115224.47 –0.042 115224.49 CICP [5]; 114590 MCDHF [35]; 115224 Expt [36]
    4s5p 3P1 111880.88 118110.59 118518.461 –0.34 118236 MCDHF [35]; 118518 Expt [36]
    4s5p 1P1 114324.78 120211.72 120550.431 –0.28 120715.81 CICP [5]; 120322 MCDHF [35]; 120550 Expt [36]
    4s6s 1S0 126011.01 132559.65 133010.30 –0.34 130793.68 CICP [5]; 133517 MCDHF [35]; 133741 Expt [36]
    4s5d 3D1 129989.22 136706.55 137157.524 –0.33 137155.79 CICP [5]; 136759 MCDHF [35]; 137157 Expt [36]
    4s6p 3P1 132039.60 138646.98
    4s6p 1P1 132671.60 139209.74
    4s7s 1S0 138282.16 145005.12 145494.205 –0.34 145176 MCDHF [35]; 145494 Expt [36]
    4s6d 3D1 140241.35 147033.96 147520.34 –0.33
    4s8s 1S0 144640.75 151383.73 151923.93 –0.36
    4s7d 3D1 145733.76 152563.77 153064.92 –0.33
    4s7p 3P1 141291.01 148033.38
    4s7p 1P1 141504.08 148239.62
    4s8p 3P1 146349.69 153163.32
    4s8p 1P1 146429.38 153251.11
    4s9s 1S0 148859.67 154959.21
    4s8d 3D1 149030.92 155885.88 156386.7 –0.32
    DownLoad: CSV

    表 2  使用RCI+MBPT方法得到的Ga+离子 4s2 1S0态和4s4p 3P0态的电偶极约化跃迁矩阵元 (a.u.)

    Table 2.  Reduced matrix elements of E1 transition for the 4s2 1S0 and 4s4p 3P0 of Ga+, obtained by using the RCI+MBPT methods (a.u.).

    Method RCI RCI+MBPT Recommend Refs.
    Guage Length Velocity Length Velocity
    4s2 1S0—4s4p 3P1 0.055752 0.059065 0.064832 0.072400 0.065 (17) 0.0744 [34]; 0.0895 MCDHF [35]; 0.0802 RRPA [38]
    4s2 1S0—4s4p 1P1 3.0918 3.0507 2.8480 3.0361 2.84 (24) 2.69 CICP [5]; 2.87 [34]; 2.68 MCDHF [35]; 2.81 MP [37];
    2.79 RRPA [38]; 2.71 MCHF [39]; 2.78 (11) Expt [40]
    4s2 1S0—4s5p 3P1 0.000595 0.000455 0.00594 0.000400 0.006 (6)
    4s2 1S0—4s5p 1P1 0.28458 0.27302 0.15426 0.23982 0.15 (13) 0.138 [34]
    4s2 1S0—4s6p 3P1 0.00229 0.00237 0.00815 0.00272 0.0082 (59)
    4s2 1S0—4s6p 1P1 0.0741 0.0684 0.0868 0.0594 0.087 (27)
    4s2 1S0—4s7p 1P1 0.0264 0.0229 0.0143 0.0205 0.014 (12)
    4s2 1S0—4s7p 3P1 0.00232 0.00249 0.00803 0.00298 0.008 (6)
    4s2 1S0—4s8p 1P1 0.00986 0.00753 0.0183 0.00768 0.02 (1)
    4s2 1S0—4s8p 3P1 0.00202 0.00233 0.00787 0.003104 0.008 (6)
    4s4p 3P0—4s5s 3S1 0.93304 0.92359 0.92029 0.90827 0.920 (25) 0.974 CICP [5]; 1.00 MCDHF [35]; 0.982 MP [37]
    4s4p 3P0—4s4d 3D1 2.1286 2.0871 2.0181 2.0670 2.02 (11) 2.00 CICP [5]; 2.08 [34]; 2.02 MCDHF [35]; 2.05 MP [37]
    4s4p 3P0—4p2 3P1 1.8133 1.7818 1.6470 1.7695 1.65 (17) 1.64 CICP [5]; 1.64 MCDHF [35]; 1.72 MP [37]
    4s4p 3P0—4s6s 3S1 0.26761 0.26392 0.26890 0.26353 0.269 (5) 0.214 CICP [5]; 0.205 MCDHF [35]; 0.217 MP [37]
    4s4p 3P0—4s5d 3D1 0.66449 0.64536 0.62443 0.65590 0.62 (4) 0.461 CICP[5]; 0.442 MCDHF [35]; 0.479 MP [37]
    4s4p 3P0—4s7s 3S1 0.14979 0.14750 0.15084 0.14798 0.151 (3)
    4s4p 3P0—4s6d 3D1 0.36574 0.35358 0.33986 0.36272 0.340 (26)
    4s4p 3P0—4s8s 3S1 0.10206 0.10042 0.10065 0.098613 0.1021 (34)
    4s4p 3P0—4s7d 3D1 0.24440 0.23567 0.22522 0.24281 0.225 (19)
    4s4p 3P0—4s9s 3S1 0.088839 0.087378 0.078599 0.078310 0.079 (11)
    4s4p 3P0—4s8d 3D1 0.18107 0.17433 0.16616 0.18060 0.181 (14)
    DownLoad: CSV

    表 3  相关跃迁对态4s2 1S0和态4s4p 3P0的静态极化率α(0)的贡献

    Table 3.  Contributions of individual transitions to the static polarizabilities α(0) for 4s2 1S0 and 4s4p 3P0.

    Transition Contributions Refs.
    $ \alpha \left(0\right)( $4s2 1S0$ ) $
    4s2 1S0—4s4p 3P1 0.013 (7)
    4s2 1S0—4s4p 1P1 16.69 (2.82) 16.601[5]
    4s2 1S0—4s5p 3P1 4.4 (4.4)×10–5
    4s2 1S0—4s5p 1P1 0.027 (27) 0.016[5]
    4s2 1S0—4s6p 3P1 7.1 (7.1)×10–5
    4s2 1S0-—4s6p 1P1 0.008 (5)
    4s2 1S0—4snp 3P1, n = 7—8 0.00012 (12)
    4s2 1S0—4snp 1P1, n = 7—9 0.0006 (4)
    Core 1.24 (1)[5] 1.24 (1)[5]
    Total 17.98 (2.82) 17.95 (34)[5]
    $ \alpha \left(0\right)( $4s4p 3P0$ ) $
    4s4p 3P0—4s5s 3S1 2.23 (12) 2.257[5]
    4s4p 3P0—4s4d 3D1 8.98 (98) 8.668 [5]
    4s4p 3P0—4p2 3P1 5.87 (1.21) 5.945[5]
    4s4p 3P0—4s6s 3S1 0.124 (5)
    4s4p 3P0—4s5d 3D1 0.62 (8)
    4s4p 3P0—4sns 3S1, n = 7—9 0.057 (13)
    4s4p 3P0—4snd 3D1, n = 6—8 0.283 (29)
    Core 1.24 (1) [5] 1.24 (1)[5]
    Total 19.41 (1.56) 19.58 (38)[5]
    $ {{\Delta }}\alpha \left(0\right) $ 1.43 (3.2) 1.63 (72) [5]
    DownLoad: CSV

    表 4  “幻零”波长和“魔幻”波长的不确定度评估表, 占主导贡献的部分在表中加重

    Table 4.  The uncertainty evaluation table for the ‘Tune-out’ wavelength and the ‘Magic’ wavelength, the dominant contribution is emphasized in the table.

    Transition ‘Tune-out’ wavelengths ‘Magic’ wavelengths
    209.101 176.42 148.61 117.197 113.09 209.286 168.1 148.27 116.38 106.7
    4s2 1S0—4s4p 3P1 0.025 0.085 <0.1 <0.001 <0.001 <0.1
    4s2 1S04s4p 1P1 0.0076 0.049 2.7 0.049 0.16 2.5
    4s2 1S0—4s5p 1P1 <0.001 <0.01 <0.1 <0.001 <0.01 0.11
    4s2 1S0—4s6p 1P1 <0.001 <0.01 <0.1 <0.001 <0.01 <0.1
    4s4p 3P0—4s5s 3S1 0.17 <0.001 0.0017 0.0073 <0.01 0.27 <0.001 <0.01 <0.1
    4s4p 3P04s4d 3D1 0.19 0.077 0.034 0.0095 0.026 1.6 0.047 0.036 0.68
    4s4p 3P04p2 3P1 0.22 0.15 0.048 0.13 0.030 1.7 0.16 0.047 0.96
    4s4p 3P0—4s6s 3S1 <0.01 <0.001 <0.001 0.0065 <0.01 <0.1 <0.001 <0.01 <0.1
    4s4p 3P0—4s5d 3D1 <0.01 <0.001 <0.001 <0.001 <0.01 <0.1 <0.001 <0.01 <0.1
    Others <0.001 <0.01 <0.01 <0.001 <0.01 <0.01 <0.1 <0.01 <0.01 <0.1
    Total 0.026 0.34 0.16 0.059 0.16 0.11 3.6 0.17 0.17 2.8
    DownLoad: CSV

    表 5  “幻零”波长和“魔幻”波长处相关跃迁对两个光钟态4s2 1S0和4s4p 3P0的动力学极化率的贡献, 占绝对贡献的部分在表中加重

    Table 5.  Breakdown of the contributions of individual transitions to the dynamic polarizabilities at the “tune-out” wavelengths and “Magic” wavelengths for the 4s2 1S0 and 4s4p 3P0 clock states of Ga+, the dominant contribution is emphasized in the table.

    Transition ‘Tune-out’ wavelengths ‘Magic’ wavelengths
    209.101 176.42 148.61 117.197 113.09 209.286 168.1 148.27 116.38 106.7
    4s2 1S0—4s4p 3P1 –32.06 –0.03 –0.01 –0.01 –0.01 9.51 –0.02 –0.01 –0.01 0.00
    4s2 1S0—4s4p 1P1 30.77 46.73 177.29 –36.57 –29.58 30.72 57.11 184.64 –34.99 –22.00
    4s2 1S0—4s5p 1P1 0.03 0.03 0.04 0.05 0.06 0.03 0.04 0.04 0.06 0.06
    4s2 1S0—4s6p 1P1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
    Others 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
    Core 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24
    Total 0.00 47.99 178.58 –35.27 –28.27 41.52 58.39 185.93 –33.68 –20.68
    4s4p 3P0—4s5s 3S1 8.59 –55.40 –4.78 –1.64 –1.46 8.54 –15.34 –4.71 –1.60 –1.21
    4s4p 3P0—4s4d 3D1 18.64 33.00 –352.26 –13.85 –11.66 18.61 45.19 –297.43 –13.37 –9.07
    4s4p 3P0—4p2 3P1 11.66 19.42 353.37 –10.10 –8.41 11.64 25.33 484.39 –9.73 –6.46
    4s4p 3P0—4s6s 3S1 0.18 0.22 0.32 16.76 –1.87 0.18 0.24 0.33 –18.78 –0.62
    4s4p 3P0—4s5d 3D1 0.87 1.0 1.43 6.46 20.77 0.87 1.12 1.44 7.43 –6.93
    Others 0.44 0.52 0.68 1.13 1.39 0.44 0.61 0.68 1.13 2.37
    Core 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24
    Total 41.62 0.00 0.00 0.00 0.00 41.52 58.39 185.93 –33.68 –20.68
    Diff. 0.00 0.00 0.00 0.0 0.0
    DownLoad: CSV
  • [1]

    Safronova M S, Kozlov M G, Clark C W 2011 Phys. Rev. Lett. 107 143006Google Scholar

    [2]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201Google Scholar

    [3]

    Cui K F, Chao S J, Sun C L, Wang S M, Zhang P, Wei Y F, Yuan J B, Cao J, Shu H L, Huang X R 2022 Eur. Phys. J. D 76 140Google Scholar

    [4]

    Keller J, Burgermeister T, Kalincev D, Didier A, Kulosa A P, Nordmann T, Kiethe J, Mehlstäubler T E 2019 Phys. Rev. A 99 013405Google Scholar

    [5]

    Cheng Y J, Mitroy J 2013 J. Phys. B: At. Mol. Opt. Phys. 46 185004Google Scholar

    [6]

    Tayal S S 1991 Phys. Scr. 43 270Google Scholar

    [7]

    魏远飞, 唐志明, 李承斌, 黄学人 2024 物理学报 73 103103Google Scholar

    Wei Y F, Tang Z M, Li C B, Huang X R 2024 Acta Phys. Sin. 73 103103Google Scholar

    [8]

    Wei, Y F, Chao S J, Cui K F, Li C B, Yu S C, Zhang H, Shu H L, Cao J, Huang X R 2024 Phys. Rev. Lett. 133 033001Google Scholar

    [9]

    Ma Z Y, Deng K, Wang Z Y, Wei W Z, Hao P, Zhang H X, Pang L R, Wang B, Wu F F, Liu H L, Yuan W H, Chang J L, Zhang J X, Wu Q Y, Zhang J, Lu Z H 2024 Phys. Rev. Appl. 21 044017Google Scholar

    [10]

    Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001Google Scholar

    [11]

    Mitroy J, Safronova M S, Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001Google Scholar

    [12]

    Porsev S G, Derevianko A 2006 Phys. Rev. A 74 020502(RGoogle Scholar

    [13]

    Zhang P, Cao J, Yuan J B, Liu D X, Yuan Y, Wei Y F, Shu H L, Huang X R 2021 Metrologia 58 035001Google Scholar

    [14]

    Arora B, Nandy D K, Sahoo B K 2012 Phys. Rev. A 85 012506Google Scholar

    [15]

    Wei Y F, Tang Z M, Li C B, Yang Y, Zou Y M, Cui K F, Huang X R 2022 Chin. Phys. B 31 083102Google Scholar

    [16]

    Liu P L, Huang Y, Bian W, Shao H, Guan H, Tang Y B, Li C B, Mitroy J, Gao K L 2015 Phys. Rev. Lett. 114 223001Google Scholar

    [17]

    Huang Y, Wang M, Chen Z, Li C B, Zhang H Q, Zhang B L, Tang L Y, Shi T Y, Guan H, Gao K L 2024 New J. Phys. 26 043021Google Scholar

    [18]

    Tang Y B, Qiao H X, Shi T Y, Mitroy J 2013 Phys. Rev. A 87 042517Google Scholar

    [19]

    Holmgren W F, Trubko R, Hromada I, Cronin A D 2012 Phys. Rev. Lett. 109 243004Google Scholar

    [20]

    Herold C D, Vaidya V D, Li X, Rolston S L, Porto J V, Safronova M S 2012 Phys. Rev. Lett. 109 243003Google Scholar

    [21]

    Safronova M S, Zuhrianda Z, Safronova U I, Clark C W 2015 Phys. Rev. A 92 040501(RGoogle Scholar

    [22]

    Mitroy J, Zhang J Y, Bromley M W J, Rollin K G 2009 Eur. Phys. J. D 53 15Google Scholar

    [23]

    Kallay M, Nataraj H S, Sahoo B K, Das B P, Visscher L 2011 Phys. Rev. A 83 030503Google Scholar

    [24]

    Yu Y M, Suo B B, Fan H 2013 Phys. Rev. A 88 052518Google Scholar

    [25]

    Dzuba V A, Flambaum V V, Kozlov M G 1996 Phys. Rev. A 54 3948Google Scholar

    [26]

    Kozlov M G, Porsev S G, Safronova M S, Tupitsyn I I 2015 Comput. Phys. Commun. 195 199Google Scholar

    [27]

    Tang Z M, Yu Y M, Jiang J, Dong C Z 2018 J. Phys. B: At. Mol. Opt. Phys. 51 125002Google Scholar

    [28]

    Cheng Y J, Jiang J, Mitroy J 2013 Phys. Rev. A 88 022511Google Scholar

    [29]

    Jiang J, Tang L Y, Mitroy J 2013 Phys. Rev. A 87 032518Google Scholar

    [30]

    Yu W W, Yu R M, Cheng Y J 2015 Chin. Phys. Lett. 32 123102Google Scholar

    [31]

    Wu L, Wang X, Wang T, Jiang J, Dong C Z 2023 New J. Phys. 25 043011Google Scholar

    [32]

    Tang Z M, Wei Y F, Sahoo B K, Li C B, Yang Y, Zou Y M, Huang X R 2024 Phys. Rev. A 110 043108Google Scholar

    [33]

    Hao L H, Liu J J 2018 J. Appl. Spectrosc 85 730Google Scholar

    [34]

    Kramida A, Ralchenko Yu, Reader J, NIST ASD Team 2024 NIST Atomic Spectra Database (ver. 5.12) [Online]. Available: https://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg, MD

    [35]

    Jonsson P, Andersson M, Sabel H, Brage T 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1813Google Scholar

    [36]

    Isberg B, Litzen U 1985 Phys. Scr. 31 533Google Scholar

    [37]

    Victor G A, Taylor W R 1983 At. Data Nucl. Data Tables 28 107Google Scholar

    [38]

    Chou H, Chi H, Huang K 1994 Phys. Rev. A 49 2394Google Scholar

    [39]

    Fischer C F, Hansen J E 1978 Phys. Rev. A 17 1956Google Scholar

    [40]

    Andersen T, Eriksen P, Poulsen O, Ramanujam P S 1979 Phys. Rev. A 20 2621Google Scholar

    [41]

    Fischer C F 2009 Phys. Scr. T134 014019Google Scholar

    [42]

    Ekman J, Godefroid M R, Hartman H 2014 Atoms 2 215Google Scholar

    [43]

    Yu W W, Yu R M, Cheng Y J, Zhou Y J 2016 Chin. Phys. B 25 023101Google Scholar

  • [1] ZHANG Yonghui, SHI Tingyun, TANG Liyan. Applications of B-spline method in precise calculation of structure of few-electron atoms. Acta Physica Sinica, 2025, 74(8): 083101. doi: 10.7498/aps.74.20241728
    [2] Bai Jian-Dong, Liu Shuo, Liu Wen-Yuan, Jie Qi, Wang Jun-Min. Theoretical analysis of polarization-angle-dependent magic-wavelength optical dipole trap of Cs atoms. Acta Physica Sinica, 2023, 72(6): 063102. doi: 10.7498/aps.72.20222268
    [3] Wang Ting, Jiang Li, Wang Xia, Dong Chen-Zhong, Wu Zhong-Wen, Jiang Jun. Theoretical study of polarizabilities and hyperpolarizabilities of Be+ ions and Li atoms. Acta Physica Sinica, 2021, 70(4): 043101. doi: 10.7498/aps.70.20201386
    [4] Wang Chen-Chao, Wu Tai-Quan, Wang Xin-Yan, Jiang Ying. Structure of NO dimer multilayer on Rh(111). Acta Physica Sinica, 2017, 66(2): 026301. doi: 10.7498/aps.66.026301
    [5] Wu Tai-Quan, Wang Xin-Yan, Jiao Zhi-Wei, Luo Hong-Lei, Zhu Ping. Structure of CO monolayer on Cu(100). Acta Physica Sinica, 2013, 62(18): 186301. doi: 10.7498/aps.62.186301
    [6] Guo Gu-Qing, Yang Liang, Zhang Guo-Qing. Atomic structure of Zr48Cu45Al7 bulk metallic glass. Acta Physica Sinica, 2011, 60(1): 016103. doi: 10.7498/aps.60.016103
    [7] Li Xiang-Dong. Atomic structure calculation model based on plasma fluctuation. Acta Physica Sinica, 2011, 60(5): 053201. doi: 10.7498/aps.60.053201
    [8] Cheng Cheng, Zhang Xiao-Le, Qing Bo, Li Jia-Ming, Gao Xiang. Full-relativistic multi-configuration self-consistent calculation of atomic structures and physical properties——Construction of “quasi-complete basis sets” and configuration interaction calculations. Acta Physica Sinica, 2010, 59(7): 4547-4555. doi: 10.7498/aps.59.4547
    [9] He Biao, Yi You-Gen, Jiang Shao-En, Tang Yong-Jian, Zheng Zhi-Jian. Theoretical calculation of Lα X-ray production cross sections of Ga, As, Pt, W and Au atoms by electron impact. Acta Physica Sinica, 2009, 58(10): 6879-6883. doi: 10.7498/aps.58.6879
    [10] Chang Zhi-Wen, Wang Qing-Lin, Luo You-Hua. Effects of spin multiplicity on atomic structure of titanium trimer. Acta Physica Sinica, 2006, 55(9): 4553-4556. doi: 10.7498/aps.55.4553
    [11] Zhao Xin-Xin, Tao Xiang-Ming, Chen Wen-Bin, Chen Xin, Shang Xue-Fu, Tan Ming-Qiu. DFT total energy study on the atomic geometry and adsorption of Cu(100) c(2×2)-N surface. Acta Physica Sinica, 2006, 55(11): 6001-6007. doi: 10.7498/aps.55.6001
    [12] Zhao Xue-An, He Jun-Hui. A study of linear and the second nonlinear admittance about the charge polarization around junction-boundaries in a quantum cavity structure. Acta Physica Sinica, 2004, 53(4): 1201-1206. doi: 10.7498/aps.53.1201
    [13] TU XIU-WEN, GAI ZHENG. ATOMIC STRUCTURE OF THE Ge(112)-(4×1)-In RECONSTRUCTION. Acta Physica Sinica, 2001, 50(12): 2439-2445. doi: 10.7498/aps.50.2439
    [14] CHEN KE, ZHAO ER-HAI, SUN XIN, FU ROU-LI. THE POLARIZABILITY OF EXCITON AND BIEXCITON IN POLYMER(ANALYTICAL CALCULATION). Acta Physica Sinica, 2000, 49(9): 1778-1785. doi: 10.7498/aps.49.1778
    [15] MENG XU-JUN, ZONG XIAO-PING, BAI YUN, SUN YONG-SHENG, ZHANG JING-LIN. SELF-CONSISTENT CALCULATION OF ATOMIC STRUCTURE FOR MIXTURE. Acta Physica Sinica, 2000, 49(11): 2133-2138. doi: 10.7498/aps.49.2133
    [16] GAO JUN-FANG, CHENG HONG-XING, XIAO YUAN, PANG WEN-NING, LONG GUI-LU, SHANG REN-CHENG. CALCULATION OF THE PARAMETERS OF POLARIZATION IN ELECTRON-ATOM(Na) COLLISION. Acta Physica Sinica, 1998, 47(10): 1606-1611. doi: 10.7498/aps.47.1606
    [17] WU ZHENG-YUN, HUANG QI-SHENG. THE METHOD OF FOCUSED Ga+ ION BEAM IMPLANTATION TO FABRICATE SEMICONDUCTOR QUANTUM WELL WIRE. Acta Physica Sinica, 1996, 45(3): 486-490. doi: 10.7498/aps.45.486
    [18] GONG XIAO-MIN, LI JIA-MING, ZHOU YU. . Acta Physica Sinica, 1995, 44(1): 50-56. doi: 10.7498/aps.44.50
    [19] CHENG HUAN-SHENG, CUI ZHI-XIANG, XU HONG-JIE, YAO XIAO-WEI, YANG FU-JIA. STUDIES OF SURFACE LAYER ATOMIC STRUCTURE OF Al(100) BY MeV ION SCATTERING. Acta Physica Sinica, 1989, 38(12): 1981-1987. doi: 10.7498/aps.38.1981
    [20] HE XING-HONG, LI BAI-WEN, ZHANG CHENG-XIU. POLARIZABILITIES OF HIGH RYDBERG ALKALI ATOMS. Acta Physica Sinica, 1989, 38(10): 1717-1722. doi: 10.7498/aps.38.1717
Metrics
  • Abstract views:  570
  • PDF Downloads:  35
  • Cited By: 0
Publishing process
  • Received Date:  26 January 2025
  • Accepted Date:  27 February 2025
  • Available Online:  20 March 2025
  • Published Online:  20 May 2025

/

返回文章
返回