Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Applications of B-spline method in precise structure calculation of few-electron atoms

ZHANG Yonghui SHI Tingyun TANG Liyan

Citation:

Applications of B-spline method in precise structure calculation of few-electron atoms

ZHANG Yonghui, SHI Tingyun, TANG Liyan
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The precise spectroscopy of few-electron atoms plays a pivotal role in advancing fundamental physics, encompassing the verification of quantum electrodynamics (QED) theory, the determination of finestructure constants, and the exploration of nuclear properties. With the rapid development of precision measurement techniques, the demand for atomic structure data has evolved from mere confirmation of existence to the pursuit of unprecedented accuracy. To meet the growing needs for precision spectroscopy experiments, we have developed a series of high-precision theoretical methods based on B-spline basis sets, including the non-relativistic configuration interaction (B-NRCI) method, the correlated B-spline basis functions (C-BSBFs) method, and the relativistic configuration interaction (B-RCI) method. These methods leverage the unique properties of B-spline functions, such as locality, completeness, and numerical stability, to accurately solve the Schrödinger and Dirac equations for few-electron atoms.
    Our methods have yielded significant results, particularly for helium and helium-like ions. Using these methods, we have obtained accurate energies, polarizabilities, tune-out wavelengths, and magic wavelengths. Specifically, we have achieved high-precision determinations of the energy spectra of helium, providing vital theoretical support for related experimental research. Additionally, we have made highprecision theoretical predictions of tune-out wavelengths, paving the way for new tests of QED theory. Furthermore, we have proposed effective theoretical schemes to suppress Stark shifts, thereby facilitating high-precision spectroscopy experiments of helium.
    The B-spline-basis methods reviewed in this paper have proven exceptionally effective in highprecision calculations for few-electron atoms. These methods have not only provided crucial theoretical support for precision spectroscopy experiments but have also paved new avenues for testing QED. Their ability to handle large-scale configuration interactions and incorporate relativistic and QED corrections makes them versatile tools for advancing atomic physics research. In the future, the high-precision theoretical methods grounded in B-spline basis sets are poised to expand into frontier areas, including quantum state manipulation, nuclear structure property determination, ultracold molecule formation, and new physics exploration, thereby continuously driving the progress of precision measurement physics.
  • [1]

    Yan Z C, Drake G W F 1995 Phys. Rev. Lett. 744791

    [2]

    Patkóš V, Yerokhin V A, Pachucki K 2016 Phys. Rev. A 94052508

    [3]

    Patkóš V, Yerokhin V A, Pachucki K 2017 Phys. Rev. A 95012508

    [4]

    Patkóš V, Yerokhin V A, Pachucki K 2019 Phys. Rev. A 100042510

    [5]

    Patkóš V, Yerokhin V A, Pachucki K 2021 Phys. Rev. A 103012803

    [6]

    Mitroy J, Tang L Y 2013 Phys. Rev. A 88052515

    [7]

    Pachucki K, Yerokhin V A 2010 Phys. Rev. Lett. 104070403

    [8]

    Beyer A, Maisenbacher L, Matveev A, Pohl R, Khabarova K, Grinin A, Lamour T, Yost D C, Hänsch T W, Kolachevsky N, Udem T 2017 Science 35879

    [9]

    Drake G W F, Dhindsa H S, Marton V J 2021 Phys. Rev. A 104 L060801

    [10]

    Bethe H A 1947 Phys. Rev. 72339

    [11]

    Karshenboim S G 2005 Phys. Rep. 4221

    [12]

    Yerokhin V A, Pachucki K, Patkóš V 2019 Ann. Phys. 5311800324

    [13]

    Drake G W F 2023 Handbook of Atomic, Molecular and Optical Physics (Cham: Springer Nature Switzerland AG 2023)

    [14]

    Pachucki K, Patkóš V, Yerokhin V A 2017 Phys. Rev. A 95062510

    [15]

    Henson B M, Ross J A, Thomas K F, Kuhn C N, Shin D K, Hodgman S S, Zhang Y H, Tang L Y, Drake G W F, Bondy A T, Truscott A G, Baldwin K G H 2022 Science 376199

    [16]

    James H M, Coolidge A S 1935 Phys. Rev. 47700

    [17]

    Mitroy J, Bubin S, Horiuchi W, Suzuki Y, Adamowicz L, Cencek W, Szalewicz K, Komasa J, Blume D, Varga K 2013 Rev. Mod. Phys. 85693

    [18]

    McKenzie D M, Drake G W F 1991 Phys. Rev. A 44 R6973

    [19]

    Drake G W F, Yan Z C 1992 Phys. Rev. A 462378

    [20]

    Yan Z C, Drake G W F 1995 Phys. Rev. A 523711

    [21]

    Yan Z, Drake G W F 1997 J. Phys. B 304723

    [22]

    Tang L Y, Yan Z C, Shi T Y, Babb J F 2009 Phys. Rev. A 79062712

    [23]

    Rooij R V, Borbely J S, Simonet J, Hoogerland M D, Eikema K S E, Rozendaal R A, Vassen W 2011 Science 333196

    [24]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 118063001

    [25]

    Kato K, Skinner T D G, Hessels E A 2018 Phys. Rev. Lett. 121143002

    [26]

    Guan H, Chen S, Qi X Q, Liang S, Sun W, Zhou P, Huang Y, Zhang P P, Zhong Z X, Yan Z C, Drake G W F, Shi T Y, Gao K 2020 Phys. Rev. A 102030801

    [27]

    Sun W, Zhang P P, Zhou P P, Chen S L, Zhou Z Q, Huang Y, Qi X Q, Yan Z C, Shi T Y, Drake G W F, Zhong Z X, Guan H, Gao K L 2023 Phys. Rev. Lett. 131103002

    [28]

    Schoenberg I J 1946 Quart. Appl. Math. 445

    [29]

    Schoenberg I J 1967 New York: Academic Press 255

    [30]

    de Boor C 1978 A practical guide to Splines (New York: Springer)

    [31]

    Johnson W R, Sapirstein J 1986 Phys. Rev. Lett. 571126

    [32]

    Johnson W R, Blundell S A, Sapirstein J 1988 Phys. Rev. A 37307

    [33]

    Grant I P 1982 Phys. Rev. A 251230

    [34]

    Fischer C F 2008 Adv. At. Mol. Opt. Phys. 55235

    [35]

    Bachau H, Cormier E, Decleva P, Hansen J E, Martín F 2001 Rep. Prog. Phys. 641815

    [36]

    Xi J H, He X H, Li B W 1992 Phys. Rev. A 465806

    [37]

    Xi J H, Wu L J, Li B W 1993 Phys. Rev. A 472701

    [38]

    Rao J G, Liu W Y, Li B W 1994 Phys. Rev. A 501916

    [39]

    Qiao H X, Li B W 1999 Phys. Rev. A 603134

    [40]

    Wu L J 1996 Phys. Rev. A 53139

    [41]

    Yu K Z, Wu L J, Gou B C, Shi T Y 2004 Phys. Rev. A 70012506

    [42]

    Zhang Y H, Tang L Y, Zhang X Z, Jiang J, Mitroy J 2012 J. Chem. Phys. 136174107

    [43]

    Zhang Y H, Tang L Y, Zhang X Z, Shi T Y, Mitroy J 2012 Chin. Phys. Lett. 29063101

    [44]

    Tang L Y, Zhang Y H, Zhang X Z, Jiang J, Mitroy J 2012 Phys. Rev. A 86012505

    [45]

    Zhang Y H, Tang L Y, Zhang X Z, Shi T Y 2015 Phys. Rev. A 92012515

    [46]

    Zhang Y H, Tang L Y, Zhang X Z, Shi T Y 2016 Chin. Phys. B 25103101

    [47]

    Zhang Y H, Tang L Y, Zhang X Z, Shi T Y 2016 Phys. Rev. A 93052516

    [48]

    Wu F F, Yang S J, Zhang Y H, Zhang J Y, Qiao H X, Shi T Y, Tang L Y 2018 Phys. Rev. A 98040501(R)

    [49]

    Zhang Y H, Wu F F, Zhang P P, Tang L Y, Zhang J Y, Baldwin K G H, Shi T Y 2019 Phys. Rev. A 99040502(R)

    [50]

    Zhang Y H, Tang L Y, Shi T Y 2021 Phys. Rev. A 104042817

    [51]

    Zhang Y H, Tang L Y, Zhang J Y, Shi T Y 2021 Phys. Rev. A 103032810

    [52]

    Yang S J, Mei X S, Shi T Y, Qiao H X 2017 Phys. Rev. A 95062505

    [53]

    Fang H, Zhang Y H, Zhang P P, Shi T Y 2023 Phys. Rev. A 108062818

    [54]

    Fang H, Zhang Y H, Li-Yan T, Shi T Y Phys. Rev. A 110

    [55]

    Yang S J, Tang Y B, Zhao Y H, Shi T Y, Qiao H X 2019 Phys. Rev. A 100042509

    [56]

    Decleva P, Lisini A, Venuti M 1995 Int. J. Quantum Chem. 5627

    [57]

    Chen M H, Cheng K T, Johnson W R 1993 Phys. Rev. A 473692

    [58]

    Wu F F, Shi T Y, Ni W T, Tang L Y 2023 Phys. Rev. A, 108, L051101

    [59]

    Lamb W E, Retherford R C 1947 Phys. Rev. 72241

    [60]

    Drake G W F, Martin W C 1998 Can. J. Phys. 76679

    [61]

    Goldman S P 1984 Phys. Rev. A 301219

    [62]

    Goldman S P, Drake G W F 2000 Can. J. Phys. 61052513

    [63]

    Drake G W F, Goldman S P 2000 Can. J. Phys. 77835

    [64]

    Goldman S P 1994 Phys. Rev. A 503039

    [65]

    Zhang Y H, Shen L J, Xiao C M, Zhang J Y, Shi T Y 2020 J. Phys. B 53135003

    [66]

    Jentschura U D, Mohr P J 2005 Phys. Rev. A 72012110

    [67]

    Tang Y B, Zhong Z X, Li C B, Qiao H X, Shi T Y 2013 Phys. Rev. A 87022510

    [68]

    Kabir P K, Salpeter E E 1957 Phys. Rev. 1081256

    [69]

    Dalgarno A, Stewart A L 1960 Proc. Phys. Soc. A 7649

    [70]

    Schwartz C 1961 Phys. Rev. 1231700

    [71]

    Korobov V I, Korobov S V 1999 Phys. Rev. A 593394

    [72]

    Korobov V I 2012 Phys. Rev. A 85042514

    [73]

    Korobov V I 2019 Phys. Rev. A 100012517

    [74]

    Notermans R P M J W, Rengelink R J, van Leeuwen K A H, Vassen W 2014 Phys. Rev. A 90052508

    [75]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87637

    [76]

    Arora B, Sahoo B K 2014 Phys. Rev. A 89022511

    [77]

    Porsev S G, Safronova M S, Derevianko A, Clark C W 2014 Phys. Rev. A 89022703

    [78]

    Puchalski M, Piszczatowski K, Komasa J, Jeziorski B, Szalewicz K 2016 Phys. Rev. A 93032515

    [79]

    Puchalski M, Szalewicz K, Lesiuk M, Jeziorski B 2020 Phys. Rev. A 101022505

    [80]

    Dzuba V A, Flambaum V V, Sushkov O P 1997 Phys. Rev. A 56 R4357

    [81]

    Mitroy J, Safronova M S, Clark C W 2010 J. Phys. B 43202001

    [82]

    Derevianko A, Savukov I M, Johnson W R, Plante D R 1998 Phys. Rev. A 584453

    [83]

    Johnson W, Plante D, Sapirstein J 1995 Adv. At., Mol., Opt. Phys. 35255

    [84]

    Pachucki K, Komasa J 2004 Phys. Rev. Lett. 92213001

    [85]

    LeBlanc L J, Thywissen J H 2007 Phys. Rev. A 75053612

    [86]

    Holmgren W F, Trubko R, Hromada I, Cronin A D 2012 Phys. Rev. Lett. 109243004

    [87]

    Copenhaver E, Cassella K, Berghaus R, Müller H 2019 Phys. Rev. A 100063603

    [88]

    Meng Z, Wang L, Han W, Liu F, Wen K, Gao C, Wang P, Chin C, Zhang J 2023 Nature 615231

    [89]

    Henson B M, Khakimov R I, Dall R G, Baldwin K G H, Tang L Y, Truscott A G 2015 Phys. Rev. Lett. 115043004

    [90]

    Lu S S, Zhang Y H, Shi T Y, Tang L Y 2025 J. Phys. B 58035002

    [91]

    Katori H, Takamoto M, Pal’chikov V G, Ovsiannikov V D 2003 Phys. Rev. Lett. 91173005

    [92]

    Takamoto M, Katori H 2003 Phys. Rev. Lett. 91223001

    [93]

    Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A, Ye J 2022 Nature 602420

    [94]

    Zheng X, Dolde J, Lochab V, Merriman B N, Li H, Kolkowitz 2022 Nature 602425

    [95]

    McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 56487

    [96]

    Rengelink R J, van der Werf Y, Notermans R P M J W, Jannin R, Eikema K S E, Hoogerland M D, Vassen W 2018 Nat. Phys. 141132

    [97]

    van der Werf Y, Steinebach K, Jannin R, Bethlem H L, Eikema K S E 2023 arXiv:2306.02333v1

    [98]

    Thomas K F, Ross J A, Henson B M, Shin D K, Baldwin K G H, Hodgman S S, Truscott A G 2020 Phys. Rev. Lett. 125013002

  • [1] Preface to the special topic: Precision spectroscopy of few-electron atoms and molecules. Acta Physica Sinica, doi: 10.7498/aps.73.200101
    [2] Wei Yuan-Fei, Tang Zhi-Ming, Li Cheng-Bin, Huang Xue-Ren. Theoretical calculation of “tune-out” wavelengths for clock states of Al+. Acta Physica Sinica, doi: 10.7498/aps.73.20240177
    [3] Xiao Zheng-Rong, Zhang Heng-Zhi, Hua Lin-Qiang, Tang Li-Yan, Liu Xiao-Jun. Precision spectroscopic measurements of few-electron atomic systems in extreme ultraviolet region. Acta Physica Sinica, doi: 10.7498/aps.73.20241231
    [4] Chen Chi-Ting, Wu Lei, Wang Xia, Wang Ting, Liu Yan-Jun, Jiang Jun, Dong Chen-Zhong. Theoretical study of static dipole polarizabilities and hyperpolarizability of B2+ and B+ ions. Acta Physica Sinica, doi: 10.7498/aps.72.20221990
    [5] Wang Ting, Jiang Li, Wang Xia, Dong Chen-Zhong, Wu Zhong-Wen, Jiang Jun. Theoretical study of polarizabilities and hyperpolarizabilities of Be+ ions and Li atoms. Acta Physica Sinica, doi: 10.7498/aps.70.20201386
    [6] Zhang Chen-Jun, Wang Yang-Li, Chen Chao-Kang. Density functional theory of InCn+(n=110) clusters. Acta Physica Sinica, doi: 10.7498/aps.67.20172662
    [7] Chen Ze-Zhang. Theoretical study on the polarizability properties of liquid crystal in the THz range. Acta Physica Sinica, doi: 10.7498/aps.65.143101
    [8] Wen Jun-Qing, Zhang Jian-Min, Yao Pan, Zhou Hong, Wang Jun-Fei. A density functional theory study of small bimetallic PdnAl (n =18) clusters. Acta Physica Sinica, doi: 10.7498/aps.63.113101
    [9] Xu Sheng-Nan, Liu Tian-Yuan, Sun Mei-Jiao, Li Shuo, Fang Wen-Hui, Sun Cheng-Lin, Li Zuo-Wei. Solvent effects on the electron-vibration coupling constant of β-carotene. Acta Physica Sinica, doi: 10.7498/aps.63.167801
    [10] Guo Zhao, Lu Bin, Jiang Xue, Zhao Ji-Jun. Structural, electronic, and optical properties of Li-n-1, Lin and Li+ n+1(n=20, 40) clusters by first-principles calculations. Acta Physica Sinica, doi: 10.7498/aps.60.013601
    [11] Zhu Xing-Bo, Zhang Hao, Feng Zhi-Gang, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. Experimental investigation of Stark effect of ultra-cold 39D cesium Rydberg atoms. Acta Physica Sinica, doi: 10.7498/aps.59.2401
    [12] Yao Jian-Ming, Yang Chong. Spin-dependent transport through a multi-electrodes controlled by an Aharonov-Bohm ring. Acta Physica Sinica, doi: 10.7498/aps.58.3390
    [13] He Yong-Lin, Zhou Xiao-Xin, Li Xiao-Yong. Study of Rydberg states of lithium in a static electric field using B-spline functions. Acta Physica Sinica, doi: 10.7498/aps.57.116
    [14] Zhang Yun-Dong, Sun Xu-Tao, He Zhu-Song. Theoretical model of laser-induced dispersion optical filter. Acta Physica Sinica, doi: 10.7498/aps.54.3000
    [15] Ma Xiao-Guang, Sun Wei-Guo, Cheng Yan-Song. A new expression for photoionization cross sections and its application in high density system. Acta Physica Sinica, doi: 10.7498/aps.54.1149
    [16] Han Ding-An, Guo Hong, Sun Hui, Bai Yan-Feng. The frequency modulation effects of the probe field in three level Λ-system. Acta Physica Sinica, doi: 10.7498/aps.53.1793
    [17] Cai Li, Ma Xi-Kui, Wang Sen. Study of hyperchaotic behavior in quantum cellular neural networks. Acta Physica Sinica, doi: 10.7498/aps.52.3002
    [18] FU RONG-TANG, LI LIE-MING, SUN XIN, FU ROU-LI. ELECTRON-PHONON INTERACTION AND NONLINEAR OPTICAL SUSCEPTIBILITY OF POLYMER. Acta Physica Sinica, doi: 10.7498/aps.42.422
    [19] SHEN SAN-GUO, FAN XI-QING. ELECTRONIC STRUCTURE OF BORON-VACANCY COMPLEX IN SILICON. Acta Physica Sinica, doi: 10.7498/aps.40.616
    [20] HE XING-HONG, LI BAI-WEN, ZHANG CHENG-XIU. POLARIZABILITIES OF HIGH RYDBERG ALKALI ATOMS. Acta Physica Sinica, doi: 10.7498/aps.38.1717
Metrics
  • Abstract views:  37
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Available Online:  21 February 2025

/

返回文章
返回