-
As a typical one-neutron halo nucleus, $^{11}$Be holds unique significance in atomic and nuclear physics research. The nucleus comprises a tightly bound $^{10}$Be core and a loosely bound valence neutron, forming an exotic nuclear configuration that exhibits remarkable differences in both magnetic and charge radii compared to conventional nuclei, thereby establishing a unique platform for investigating nuclear-electron interactions. This study focuses on the helium-like $^{11}$Be$^{2+}$ ion, employing the relativistic configuration interaction (RCI) method combined with high-order $B$-spline basis functions to systematically calculate the energies and wavefunctions of the $n\,^{3}\!S_1$ and $n\,^{3}\!P_{0,1,2}$ states up to principal quantum number $n=8$. By directly incorporating the nuclear mass shift operator $H_M$ into the Dirac-Coulomb-Breit (DCB) Hamiltonian, this work achieves a comprehensive treatment of relativistic effects, Breit interactions, and nuclear mass corrections for $^{11}$Be$^{2+}$. The results demonstrate that the energies of states with $n\leq5$ converge to eight significant digits, showing excellent agreement with existing NRQED values, such as $-9.298\,711\,91(5)$ a.u. for the $2\,^{3}\!S_1$ state. The nuclear mass corrections are on the order of $10^{-4}$ a.u. and decrease with increasing principal quantum number.
Using the high-precision wavefunctions, the electric dipole oscillator strengths for $k\,^3\!S_1 \rightarrow m\,^3\!P_{0,1,2}$ transitions ($k \leq 5$, $m \leq 8$) were determined, with results for low-lying excited states ($m\leq4$) accurate to six significant digits, providing reliable data for evaluating transition probabilities and radiative lifetimes. Furthermore, the dynamic electric dipole polarizabilities of the $n'\,^3\!S_1$ ($n' \leq 5$) states were calculated via the sum-over-states method. The static polarizabilities exhibit a significant increase with principal quantum number. For the $J=1$ state, the difference in polarizability between the magnetic sublevels $M_J=0$ and $M_J=\pm1$ is three times the tensor polarizability. In the calculation of dynamic polarizabilities, the precision reaches $10^{-6}$ in non-resonant regions, whereas achieving the same accuracy near resonance requires higher energy precision. These high-precision computational results provide crucial theoretical foundations and key input parameters for evaluating Stark shifts in high-precision measurements, simulating light-matter interactions, and investigating single-neutron halo nuclear structures. -
[1] Mitroy J, Safronova M S, Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001
[2] Wang T, Jiang L, Wang X, Dong C Z, Wu Z W, Jiang J 2021 Acta Phys. Sin. 70 043101 (in Chinese) [王婷, 蒋丽, 王霞, 董晨钟, 武中文, 蒋军 2021 物理学报 70 043101]
[3] Notermans R P M J W, Rengelink R J, van Leeuwen K A H, Vassen W 2014 Phys. Rev. A 90 052508
[4] Lou Z S, Wang Y F, Kang B Y, Li R, Zhang W J, Wei Y F, Bu M L, Cai Y Y 2025 Acta Phys. Sin. 74 103202 (in Chinese) [娄宗帅, 王跃飞, 康博溢, 李睿, 张文君, 魏远飞, 布明鹭, 蔡翊宇 2025 物理学 报 74 103202]
[5] Mitroy J, Zhang J Y, Bromley M W J 2008 Phys. Rev. A 77 032512
[6] Babb J F, Klimchitskaya G L, Mostepanenko V M 2004 Phys. Rev. A 70 042901
[7] Patkóš V c v, Yerokhin V A, Pachucki K 2021 Phys. Rev. A 103 042809
[8] Patkóš V c v, Yerokhin V A, Pachucki K 2021 Phys. Rev. A 103 012803
[9] Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 118 063001
[10] Kato K, Skinner T D G, Hessels E A 2018 Phys. Rev. Lett. 121 143002
[11] Guan H, Chen S, Qi X Q, Liang S, Sun W, Zhou P, Huang Y, Zhang P P, Zhong Z X, Yan Z C, Drake G W F, Shi T Y, Gao K 2020 Phys. Rev. A 102 030801(R)
[12] Qi X Q, Zhang P P, Yan Z C, Drake G W F, Zhong Z X, Shi T Y, Chen S L, Huang Y, Guan H, Gao K L 2020 Phys. Rev. Lett. 125 183002
[13] Sun W, Zhang P P, Zhou P p, Chen S l, Zhou Z q, Huang Y, Qi X Q, Yan Z C, Shi T Y, Drake G W F, Zhong Z X, Guan H, Gao K l 2023 Phys. Rev. Lett. 131 103002
[14] Qi X Q, Zhang P P, Yan Z C, Tang L Y, Chen A X, Shi T Y, Zhong Z X 2025 Phys. Rev. Res. 7 L022020
[15] Puchalski M, Piszczatowski K, Komasa J, Jeziorski B, Szalewicz K 2016 Phys. Rev. A 93 032515
[16] Mitroy J, Tang L Y 2013 Phys. Rev. A 88 052515
[17] Wu F F, Deng K, Lu Z H 2022 Phys. Rev. A 106 042816
[18] Henson B M, Ross J A, Thomas K F, Kuhn C N, Shin D K, Hodgman S S, Zhang Y H, Tang L Y, Drake G W F, Bondy A T, Truscott A G, Baldwin K G H 2022 Science 376 199–203
[19] Yan Z C, Drake G W F 1995 Phys. Rev. Lett. 74 4791–4794
[20] Johnson W R, Cheng K T, Plante D R 1997 Phys. Rev. A 55 2728–2742
[21] Yerokhin V A, Pachucki K 2010 Phys. Rev. A 81 022507
[22] Qi X Q, Zhang P P, Yan Z C, Shi T Y, Drake G W F, Chen A X, Zhong Z X 2023 Phys. Rev. A 107 L010802
[23] Qi X Q, Zhang P P, Yan Z C, Drake G W F, Chen A X, Zhong Z X, Shi T Y 2024 Phys. Rev. A 110 012810
[24] Bishop D M, Rérat M 1989 J. Chem. Phys. 91 5489–5491
[25] Johnson W R, Cheng K T 1996 Phys. Rev. A 53 1375–1378
[26] Zhu J M, Zhou B L, Yan Z C 1999 Chem. Phys. Lett. 313 184–188
[27] Yan Z C, Zhu J M, Zhou B L 2000 Phys. Rev. A 62 034501
[28] Zhu J M, Zhou B L, Yan Z C 2000 Mol. Phys. 98 529–534
[29] Wu F F, Deng K, Lu Z H 2023 J. Quant. Spectrosc. Radiat. Transf. 295 108414
[30] Wu F F, Qi X Q, Chen A X 2024 J. Chem. Phys. 161 134304
[31] Takamine A, Wada M, Okada K, Nakamura T, Schury P, Sonoda T, Lioubimov V, Iimura H, Yamazaki Y, Kanai Y, Kojima T M, Yoshida A, Kubo T, Katayama I, Ohtani S, Wollnik H, Schuessler H A 2009 Eur. Phys. J. A 42 369–373
[32] Tiesinga E, Mohr P J, Newell D B, Taylor B N 2021 Rev. Mod. Phys. 93 025010
[33] Johnson W R, Blundell S A, Sapirstein J 1988 Phys. Rev. A 37 307–315
[34] Wu F F, Shi T Y, Ni W T, Tang L Y 2023 Phys. Rev. A 108 L051101
[35] Porsev S G, Kozlov M G, Safronova M S 2023 Phys. Rev. A 108 L051102
Metrics
- Abstract views: 218
- PDF Downloads: 0
- Cited By: 0