-
The Lorentz-boosted electromagnetic fields surrounding relativistic heavy ions with large charges can be treated as a flux of linearly polarized quasireal photons, which can interact via the photon-photon scattering to produce lepton antilepton pairs. Those photon-photon interactions can happen even in heavy-ion collisions with hadronic overlap, making an opportunity to probe the electromagnetic properties of the produced deconfined quark-gluon plasma. In this paper, we review the recent experimental progress of the impact parameter dependent photon-photon interactions in heavy-ion collisions, and discuss their essential role in probing the possible electromagnetic properties of quark-gluon plasma produced in hadronic heavy-ion collisions.
-
Keywords:
- relativistic heavy-ion collisions /
- quark gluon plasma /
- photon-photon interactions /
- foward neutron tagging /
- dilepton
[1] Fermi E 1924 Z. Phys. 29 315Google Scholar
[2] Williams E J 1934 Phys. Rev. 45 729Google Scholar
[3] Weizsacker C F von 1934 Z. Phys. 88 612Google Scholar
[4] Bertulani C A, Baur G 1988 Phys. Rep. 163 299Google Scholar
[5] Baur G, Hencken K, Trautmann D, Sadovsky S, Kharlov Y 2002 Phys. Rep. 364 359Google Scholar
[6] Bertulani C A, Klein S R, Nystrand J 2005 Annu. Rev. Nucl. Part. Sci. 55 271Google Scholar
[7] Baltz A J, Baur G, d’Enterria D, Frankfurt L, Gelis F, Guzey V, Hencken K, Kharlov Y, Klasen M, Klein S R, Nikulin V, Nystrand J, Pshenichnov I A, Sadovsky S, Scapparone E, Seger J, Strikman M, Tverskoy M, Vogt R, White S N, Wiedemann U A, Yepes P, Zhalov M 2008 Phys. Rep. 458 1Google Scholar
[8] Klein S R, Steinberg P 2020 Annu. Rev. Nucl. Part. Sci. 70 323Google Scholar
[9] Baur G, Hencken K, Trautmann D 2007 Phys. Rep. 453 1Google Scholar
[10] STAR Collaboration 2004 Phys. Rev. C 70 031902Google Scholar
[11] STAR Collaboration 2021 Phys. Rev. Lett. 127 052302Google Scholar
[12] PHENIX Collaboration 2009 Phys. Lett. B 679 321Google Scholar
[13] ALICE Collaboration 2013 Eur. Phys. J. C 73 2617Google Scholar
[14] CMS Collaboration 2019 Phys. Lett. B 797 134826Google Scholar
[15] ATLAS Collaboration 2017 Nat. Phys. 13 852Google Scholar
[16] ATLAS Collaboration 2019 Phys. Rev. Lett. 123 052001Google Scholar
[17] Bruce R, d'Enterria D, d’Roeck A, Drewes M, Farrar G R, Giammanco A, Gould O, Hajer J, Harland-Lang L, Heisig J, Jowett J M, Kabana S, Krintiras G K, Korsmeier M, Lucente M, Milhano G, Mukherjee S, Niedziela J, Okorokov V A, Rajantie A, Schaumann M 2020 J. Phys. G 47 060501Google Scholar
[18] STAR Collaboration 2002 Phys. Rev. Lett. 89 272302Google Scholar
[19] CMS Collaboration 2019 Eur. Phys. J. C 79 277Google Scholar
[20] CMS Collaboration 2023 arXiv: 2303.16984 [nucl-ex
[21] CMS Collaboration 2023 Phys. Rev. Lett. 131 051901Google Scholar
[22] STAR Collaboration 2017 Phys. Rev. C 96 054904Google Scholar
[23] STAR Collaboration 2023 Sci. Adv. 9 eabq3903Google Scholar
[24] ALICE Collaboration 2013 Phys. Lett. B 718 1273Google Scholar
[25] ALICE Collaboration 2014 Phys. Rev. Lett. 113 232504Google Scholar
[26] ALICE Collaboration 2019 Phys. Lett. B 798 134926Google Scholar
[27] ALICE Collaboration 2021 Phys. Lett. B 817 136280Google Scholar
[28] ALICE Collaboration 2023 arXiv: 2305.06169 [nucl-ex
[29] CMS Collaboration 2017 Phys. Lett. B 772 489Google Scholar
[30] ALICE Collaboration 2016 Phys. Rev. Lett. 116 222301Google Scholar
[31] ATLAS Collaboration 2018 Phys. Rev. Lett. 121 212301Google Scholar
[32] ATLAS Collaboration 2023 Phys. Rev. C 107 054907Google Scholar
[33] STAR Collaboration 2018 Phys. Rev. Lett. 121 132301Google Scholar
[34] STAR Collaboration 2019 Phys. Rev. Lett. 123 132302Google Scholar
[35] CMS Collaboration 2021 Phys. Rev. Lett. 127 122001Google Scholar
[36] ATLAS Collaboration 2021 Phys. Rev. C 104 024906Google Scholar
[37] Zha W, Brandenburg J D, Tang Z, Xu Z 2020 Phys. Lett. B 800 135089Google Scholar
[38] Brandenburg J D, Zha W, Xu Z 2021 Eur. Phys. J. A 57 299Google Scholar
[39] Li C, Zhou J, Zhou Y 2019 Phys. Lett. B 795 576Google Scholar
[40] Li C, Zhou J, Zhou Y 2020 Phys. Rev. D 101 034015Google Scholar
[41] Klein S, Mueller A H, Xiao B, Yuan F 2020 Phys. Rev. D 102 094013Google Scholar
[42] Xiao B, Yuan F, Zhou J 2020 Phys. Rev. Lett. 125 232301Google Scholar
[43] Wang R, Pu S, Wang Q 2021 Phys. Rev. D 104 056011Google Scholar
[44] Wang R, Lin S, Pu S, Zhang Y, Wang Q 2022 Phys. Rev. D 106 034025Google Scholar
[45] 浦实, 肖博文, 周剑, 周雅瑾 2023 物理学报 72 072503Google Scholar
PU S, Xiao B, Zhou J, Zhou Y 2023 Acta Phys. Sin. 72 072503Google Scholar
[46] Rapp R 2013 Adv. High Energy Phys. 2013 148253
[47] Zha W, Ruan L, Tang Z, Xu Z, Yang S 2018 Phys. Lett. B 781 182Google Scholar
[48] Klein S R 2018 Phys. Rev. C 97 054903Google Scholar
[49] Berman B L, Fultz S C 1975 Rev. Mod. Phys. 47 713Google Scholar
[50] Klein S R, Nystrand J, Seger J, Gorbunov Y, Butterworth J 2017 Comput. Phys. Commun. 212 258Google Scholar
[51] Brandenburg J D, Li W, Ruan L, Tang Z, Xu Z, Yang S, Zha W 2020 arXiv: 2006.07365 [hep-ph
-
图 3 60%—80% (a) 和40%—60% (b)金核-金核和铀核-铀核碰撞中心度事例中低横动量(
$ p_{\rm{T}} < $ 0.15 GeV/c)正负电子对的不变质量增强谱; (c) 金核-金核和铀核-铀核碰撞中不同质量区间增强产额对碰撞中心度的依赖[33]Figure 3. The low-
$ p_{\rm{T}} $ ($ p_{\rm{T}} < $ 0.15 GeV/c)$ {\rm{e}}^+{\rm{e}}^- $ excess mass spectra in 60%–80% (a) and 40%–60% (b) Au + Au and U + U collisions; (c) centrality dependence of integrated excess yields in three different mass regions in Au + Au and U + U collisions[33].图 6
$ 0 {\rm{n}}0 {\rm{n}} $ ,$ 0 {\rm{n}}Y{\rm{n}} $ ,$ Y{\rm{n}}Y{\rm{n }}$ , (其中$ Y \geqslant 1 $ )对应的碰撞参数范围[8]Figure 6. The impact parameter dependence of the
$ 0 {\rm{n}}0 {\rm{n}} $ ,$ Y{\rm{n}}0{\rm{ n }}$ ,$ Y{\rm{n}}Y{\rm{n }}$ ($ Y \geqslant 1 $ ) neutron emission scenarios from the STARlight model[8]图 8 5.02 TeV铅核-铅核超周边碰撞中不同前向中子多重数下正负缪子对的α分布[35]
Figure 8. Neutron multiplicity dependence of α distributions from
$ \gamma\gamma\rightarrow{\text{μ}}^+{\text{μ}}^- $ in ultraperipheral Pb-Pb collisions at$ \sqrt{s_{\mathrm{NN}}} = $ 5.02 TeV. The α distributions are normalized to unity integral over their measured ranges[35].图 12 预计STAR于2023至2025年在200 GeV金核-金核偏心和超周边碰撞中测量
$ \gamma\gamma \rightarrow {\rm{e}}^+{\rm{e}}^- $ 物理过程可达到的精度[38]Figure 12. Projection for measurements of the
$ \gamma\gamma \rightarrow {\rm{e}}^+{\rm{e}}^- $ process in peripheral and ultra-peripheral Au + Au collisions at$ \sqrt{s_{\mathrm{NN}}} = $ 200 GeV[38]. -
[1] Fermi E 1924 Z. Phys. 29 315Google Scholar
[2] Williams E J 1934 Phys. Rev. 45 729Google Scholar
[3] Weizsacker C F von 1934 Z. Phys. 88 612Google Scholar
[4] Bertulani C A, Baur G 1988 Phys. Rep. 163 299Google Scholar
[5] Baur G, Hencken K, Trautmann D, Sadovsky S, Kharlov Y 2002 Phys. Rep. 364 359Google Scholar
[6] Bertulani C A, Klein S R, Nystrand J 2005 Annu. Rev. Nucl. Part. Sci. 55 271Google Scholar
[7] Baltz A J, Baur G, d’Enterria D, Frankfurt L, Gelis F, Guzey V, Hencken K, Kharlov Y, Klasen M, Klein S R, Nikulin V, Nystrand J, Pshenichnov I A, Sadovsky S, Scapparone E, Seger J, Strikman M, Tverskoy M, Vogt R, White S N, Wiedemann U A, Yepes P, Zhalov M 2008 Phys. Rep. 458 1Google Scholar
[8] Klein S R, Steinberg P 2020 Annu. Rev. Nucl. Part. Sci. 70 323Google Scholar
[9] Baur G, Hencken K, Trautmann D 2007 Phys. Rep. 453 1Google Scholar
[10] STAR Collaboration 2004 Phys. Rev. C 70 031902Google Scholar
[11] STAR Collaboration 2021 Phys. Rev. Lett. 127 052302Google Scholar
[12] PHENIX Collaboration 2009 Phys. Lett. B 679 321Google Scholar
[13] ALICE Collaboration 2013 Eur. Phys. J. C 73 2617Google Scholar
[14] CMS Collaboration 2019 Phys. Lett. B 797 134826Google Scholar
[15] ATLAS Collaboration 2017 Nat. Phys. 13 852Google Scholar
[16] ATLAS Collaboration 2019 Phys. Rev. Lett. 123 052001Google Scholar
[17] Bruce R, d'Enterria D, d’Roeck A, Drewes M, Farrar G R, Giammanco A, Gould O, Hajer J, Harland-Lang L, Heisig J, Jowett J M, Kabana S, Krintiras G K, Korsmeier M, Lucente M, Milhano G, Mukherjee S, Niedziela J, Okorokov V A, Rajantie A, Schaumann M 2020 J. Phys. G 47 060501Google Scholar
[18] STAR Collaboration 2002 Phys. Rev. Lett. 89 272302Google Scholar
[19] CMS Collaboration 2019 Eur. Phys. J. C 79 277Google Scholar
[20] CMS Collaboration 2023 arXiv: 2303.16984 [nucl-ex
[21] CMS Collaboration 2023 Phys. Rev. Lett. 131 051901Google Scholar
[22] STAR Collaboration 2017 Phys. Rev. C 96 054904Google Scholar
[23] STAR Collaboration 2023 Sci. Adv. 9 eabq3903Google Scholar
[24] ALICE Collaboration 2013 Phys. Lett. B 718 1273Google Scholar
[25] ALICE Collaboration 2014 Phys. Rev. Lett. 113 232504Google Scholar
[26] ALICE Collaboration 2019 Phys. Lett. B 798 134926Google Scholar
[27] ALICE Collaboration 2021 Phys. Lett. B 817 136280Google Scholar
[28] ALICE Collaboration 2023 arXiv: 2305.06169 [nucl-ex
[29] CMS Collaboration 2017 Phys. Lett. B 772 489Google Scholar
[30] ALICE Collaboration 2016 Phys. Rev. Lett. 116 222301Google Scholar
[31] ATLAS Collaboration 2018 Phys. Rev. Lett. 121 212301Google Scholar
[32] ATLAS Collaboration 2023 Phys. Rev. C 107 054907Google Scholar
[33] STAR Collaboration 2018 Phys. Rev. Lett. 121 132301Google Scholar
[34] STAR Collaboration 2019 Phys. Rev. Lett. 123 132302Google Scholar
[35] CMS Collaboration 2021 Phys. Rev. Lett. 127 122001Google Scholar
[36] ATLAS Collaboration 2021 Phys. Rev. C 104 024906Google Scholar
[37] Zha W, Brandenburg J D, Tang Z, Xu Z 2020 Phys. Lett. B 800 135089Google Scholar
[38] Brandenburg J D, Zha W, Xu Z 2021 Eur. Phys. J. A 57 299Google Scholar
[39] Li C, Zhou J, Zhou Y 2019 Phys. Lett. B 795 576Google Scholar
[40] Li C, Zhou J, Zhou Y 2020 Phys. Rev. D 101 034015Google Scholar
[41] Klein S, Mueller A H, Xiao B, Yuan F 2020 Phys. Rev. D 102 094013Google Scholar
[42] Xiao B, Yuan F, Zhou J 2020 Phys. Rev. Lett. 125 232301Google Scholar
[43] Wang R, Pu S, Wang Q 2021 Phys. Rev. D 104 056011Google Scholar
[44] Wang R, Lin S, Pu S, Zhang Y, Wang Q 2022 Phys. Rev. D 106 034025Google Scholar
[45] 浦实, 肖博文, 周剑, 周雅瑾 2023 物理学报 72 072503Google Scholar
PU S, Xiao B, Zhou J, Zhou Y 2023 Acta Phys. Sin. 72 072503Google Scholar
[46] Rapp R 2013 Adv. High Energy Phys. 2013 148253
[47] Zha W, Ruan L, Tang Z, Xu Z, Yang S 2018 Phys. Lett. B 781 182Google Scholar
[48] Klein S R 2018 Phys. Rev. C 97 054903Google Scholar
[49] Berman B L, Fultz S C 1975 Rev. Mod. Phys. 47 713Google Scholar
[50] Klein S R, Nystrand J, Seger J, Gorbunov Y, Butterworth J 2017 Comput. Phys. Commun. 212 258Google Scholar
[51] Brandenburg J D, Li W, Ruan L, Tang Z, Xu Z, Yang S, Zha W 2020 arXiv: 2006.07365 [hep-ph
Catalog
Metrics
- Abstract views: 2306
- PDF Downloads: 55
- Cited By: 0