Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bottominium-like states in e+e annihilation

Ye Quan-Xing He Guang-Zhao Wang Qian

Citation:

Bottominium-like states in e+e annihilation

Ye Quan-Xing, He Guang-Zhao, Wang Qian
PDF
HTML
Get Citation
  • In the conventional quark model, meson is made of one quark and one antiquark, and baryon is made of three quarks. Since the observation of the ${\rm{X}}(3872)$ in 2003 by Belle collaboration, numerous exotic candidates beyond the conventional quark model have been observed. Most of them are located in heavy quarkonium energy region. Several interpretations, e.g. compact multiquarks, hadronic molecules, hybrids, etc, are proposed to understand their internal structures. Hadronic molecules are based on the fact that most of exotic candidates have nearby thresholds, which makes them analogies of deuteron made of one proton and one neutron. Whether two or more hadrons can be form a hadronic molecule or not depends on their interactions. In this work, we study the ${\rm{P}}$-wave ${\rm{B}}^{(*)}\bar{{\rm{B}}}^{(*)}$ interactions based on the ${\rm{e^+e^-}}\to {\rm{B}}^{(*)}\bar{{\rm{B}}}^{(*)}$ cross sections from Belle-II experiment to study whether their interaction can form vector bottomonium-like states or not. As ${\rm{B}}^{(*)}$ and $\bar{{\rm{B}}}^{(*)}$ mesons have bottom and antibottom quark, respectively, we work in the heavy quark limit, which respects both heavy quark spin symmetry and heavy quark flavor symmetry. In this framework, we construct effective contact potentials for $J^{{\rm{PC}}}=1^{--}$ ${\rm{P}}$-wave ${\rm{B}}^{(*)}\bar{{\rm{B}}}^{(*)}$ interactions, by decomposing the ${\rm{B}}^{(*)}\bar{{\rm{B}}}^{(*)}$ dynamic channels into heavy-light basis. That, in the heavy quark limit, heavy and light degrees of freedoms are conserved individually makes the contact potentials in a very simple form. After solving the corresponding Lippmann-Schwinger equation, one can obtain the ${\rm{e^+e^-}}\to {\rm{B}}^{(*)}\bar{{\rm{B}}}^{(*)}$ scattering amplitudes. With these scattering amplitudes, we can deduce the corresponding cross sections,which can be compared with the experimental data directly. By fitting to the data, we find that the mass shifts of the considered bottomonia are small due to their small couplings to the ${\rm{B}}^{(*)}\bar{{\rm{B}}}^{(*)}$ continuum channels. As the result, the $\Upsilon(4{\rm{S}})$, $\Upsilon(3{\rm{D}})$, $\Upsilon(5{\rm{S}})$ and $\Upsilon(6{\rm{S}})$ vector bottomonia express theirselves as peaks at $10.58\; {\rm{GeV}}$, $10.87\; {\rm{GeV}}$, $11.03\; {\rm{GeV}}$. The peak at $10.87\; {\rm{GeV}}$ is the interference between $\Upsilon(3{\rm{D}})$ and $\Upsilon(5{\rm{S}})$. As there are only two data points around $10.63\; {\rm{GeV}}$, we cannot obtain a very clear conclusion about the peak around this energy point. To further explore its nature, both detailed scan around this energy region in experiment and improved formula in theory are needed.
      Corresponding author: Wang Qian, qianwang@m.scnu.edu.cn
    • Funds: Project supported by the Key Program of the Natural Science Foundation of China (Grant No. 12035007) and the Guangdong Provincial Funding, China (Grant No. 2019QN01X172).
    [1]

    Gell-Mann M 1964 Phys. Lett. 8 214Google Scholar

    [2]

    Zweig G 1964 An SU(3) model for strong interaction symmetry and its breaking CM-P0004288

    [3]

    Choi S K, Olsen S L, Abe K, et al. 2003 Phys. Rev. Lett. 91 262001Google Scholar

    [4]

    Chen H X, Chen W, Liu X, Zhu S L 2016 Phys. Rep. 639 1Google Scholar

    [5]

    Chen H X, Chen W, Liu X, Liu Y R, Zhu S L 2017 Rep. Prog. Phys. 80 076201Google Scholar

    [6]

    Dong Y, Faessler A, Lyubovitskij V E 2017 Prog. Part. Nucl. Phys. 94 282Google Scholar

    [7]

    Lebed R F, Mitchell R E, Swanson E S 2017 Prog. Part. Nucl. Phys. 93 143Google Scholar

    [8]

    Guo F K, Hanhart C, Meißner U G, Wang Q, Zhao Q, Zou B S 2018 Rev. Mod. Phys. 90 015004Google Scholar

    [9]

    Liu Y R, Chen H X, Chen W, Liu X, Zhu S L 2019 Prog. Part. Nucl. Phys. 107 237Google Scholar

    [10]

    Albuquerque R M, Dias J M, Khemchandani K P, Torres A M, Navarra F S, Nielsen M, Zanetti C M 2019 J. Phys. G 46 093002Google Scholar

    [11]

    Yamaguchi Y, Hosaka A, Takeuchi S, Takizawa M 2020 J. Phys. G 47 053001Google Scholar

    [12]

    Guo F K, Liu X H, Sakai S 2020 Prog. Part. Nucl. Phys. 112 103757Google Scholar

    [13]

    Brambilla N, Eidelman S, Hanhart C, Nefediev A, Shen C P, Thomas C E, Vairo A, Yuan C Z 2020 Phys. Rep. 873 1Google Scholar

    [14]

    Zou B S 2021 Sci. Bull. 66 1258Google Scholar

    [15]

    Wang Q, Hanhart C, Zhao Q 2013 Phys. Rev. Lett. 111 132003Google Scholar

    [16]

    Guo F K, Hanhart C, Meißner U G, Wang Q, Zhao Q 2013 Phys. Lett. B 725 127Google Scholar

    [17]

    Cleven M, Wang Q, Guo F K, Hanhart C, Meißner U G, Zhao Q 2014 Phys. Rev. D 90 074039Google Scholar

    [18]

    Wang Q, Cleven M, Guo F K, Hanhart C, Meißner U G, Wu X G, Zhao Q 2014 Phys. Rev. D 89 034001Google Scholar

    [19]

    Wu X G, Hanhart C, Wang Q, Zhao Q 2014 Phys. Rev. D 89 054038Google Scholar

    [20]

    Chen Y H, Dai L Y, Guo F K, Kubis B 2019 Phys. Rev. D 99 074016Google Scholar

    [21]

    Xue S R, Jing H J, Guo F K, Zhao Q 2018 Phys. Lett. B 779 402Google Scholar

    [22]

    Lu Y, Anwar M N, Zou B S 2017 Phys. Rev. D 96 114022Google Scholar

    [23]

    Qin W, Xue S R, Zhao Q 2017 JPS Conf. Proc. 13 020022Google Scholar

    [24]

    Cleven M, Zhao Q 2017 Phys. Lett. B 768 52Google Scholar

    [25]

    Qin W, Xue S R, Zhao Q 2016 Phys. Rev. D 94 054035Google Scholar

    [26]

    Li G, An C S, Li P Y, Liu D, Zhang X, Zhou Z 2015 Chin. Phys. C 39 063102Google Scholar

    [27]

    Li G, Liu X H 2013 Phys. Rev. D 88 094008Google Scholar

    [28]

    Li X, Voloshin M B 2013 Phys. Rev. D 88 034012Google Scholar

    [29]

    Dong X K, Lin Y H, Zou B S 2020 Phys. Rev. D 101 076003Google Scholar

    [30]

    Cao Z, Zhao Q 2019 Phys. Rev. D 99 014016Google Scholar

    [31]

    Sanchez M, Geng L S, Lu J X, Hyodo T, Valderrama M P 2018 Phys. Rev. D 98 054001Google Scholar

    [32]

    Wang Q 2014 Phys. Rev. D 89 114013Google Scholar

    [33]

    Ji T, Dong X K, Guo F K, Zou B S 2022 Phys. Rev. Lett. 129 102002Google Scholar

    [34]

    Mizuk R, Bondar A, Adachi I, et al. 2021 JHEP 06 137Google Scholar

    [35]

    Du M L, Meißner U G, Wang Q 2016 Phys. Rev. D 94 096006Google Scholar

    [36]

    Voloshin M B 2012 Phys. Rev. D 85 034024Google Scholar

    [37]

    Du M L, Baru V, Guo F K, Hanhart C, Meißner U G, Oller J A, Wang Q 2020 Phys. Rev. Lett. 124 072001Google Scholar

    [38]

    Du M L, Baru V, Guo F K, Hanhart C, Meißner U G, Oller J A, Wang Q 2021 JHEP 08 157Google Scholar

    [39]

    Baru V, Epelbaum E, Filin A A, Hanhart C, Nefediev A V, Wang Q 2019 Phys. Rev. D 99 094013Google Scholar

    [40]

    Wang Q, Baru V, Filin A A, Hanhart C, Nefediev A V, Wynen J L 2018 Phys. Rev. D 98 074023Google Scholar

    [41]

    Workman R L, Burkert V D, Crede V, et al. 2022 PTEP 2022 083CGoogle Scholar

    [42]

    Mizuk R, Bondar A, Adachi I, et al. 2019 JHEP 10 220Google Scholar

    [43]

    Wang Q, Liu X H, Zhao Q 2011 Phys. Rev. D 84 014007Google Scholar

  • 图 1  质心能量在$ [10.55, 11.03]\; {\rm{GeV}} $之间 $ {\rm{e^+e^-}} \rightarrow {\rm{B}}^{(*)}\bar{{\rm{B}}}^{(*)} $的散射截面. 实验数据点来自BelleII合作组[34]. 蓝色实线是理论计算的截面. 3条垂直的红色虚线从低到高分别是$ {\rm{B}}\bar{{\rm{B}}} $, $ {\rm{B}}\bar{{\rm{B}}}^* $, $ {\rm{B}}^*\bar{{\rm{B}}}^* $的阈值. 其中$ {\rm{e^+e^-}}\to {\rm{B}}^*\bar{{\rm{B}}}^* $过程的截面是第3个道和第4个道贡献的总和

    Figure 1.  The cross sections of the $ {\rm{e^+e^-}} \rightarrow {\rm{B}}^{(*)}\bar{{\rm{B}}}^{(*)} $ in the center of mass energy region $ [10.55, 11.03]\; {\rm{GeV}} $. The blue solid curves are the theoretical results. The vertical red dashed lines are the $ {\rm{B}}\bar{{\rm{B}}} $, $ {\rm{B}}\bar{{\rm{B}}}^* $, $ {\rm{B}}^*\bar{{\rm{B}}}^* $ thresholds. The cross section of the $ {\rm{e^+e^-}}\to {\rm{B}}^*\bar{{\rm{B}}}^* $ process is the sum of that of the third and forth channels

    表 1  拟合参数和约化卡方

    Table 1.  Fitted parameters and the corresponding reduced $ \chi ^2 $

    参数名 参数值 单位
    $ C_0 $ $ 0.160\pm 0.149 $ $ {\rm{GeV}}^{-2} $
    $ C_1 $ $ 1.669\pm 0.003 $ $ {\rm{GeV}}^{-2} $
    $ C_2 $ $ -1.785\pm 2.677 $ $ {\rm{GeV}}^{-2} $
    $ g_{4{\rm{S}}} $ $ -2.377\pm 0.180 $ $ {\rm{GeV}}^{0} $
    $ g_{3{\rm{D}}} $ $ 0.966\pm 0.430 $ $ {\rm{GeV}}^{0} $
    $ g_{5{\rm{S}}} $ $ -0.571\pm 0.073 $ $ {\rm{GeV}}^{0} $
    $ g_{6{\rm{S}}} $ $ 0.252\pm 0.102 $ $ {\rm{GeV}}^{0} $
    $ f_{{\rm{S}}}^0 $ $ 1.040\pm 0.097 $ $ {\rm{GeV}}^{0} $
    $ f_{D}^0 $ $ -1.543\pm 1.535 $ $ {\rm{GeV}}^{0} $
    $ m_{4{\rm{S}}} $ $ 10.468\pm 0.043 $ $ {\rm{GeV}} $
    $ m_{3{\rm{D}}} $ $ 10.856\pm 0.004 $ $ {\rm{GeV}} $
    $ m_{5{\rm{S}}} $ $ 10.830\pm 0.011 $ $ {\rm{GeV}} $
    $ m_{6{\rm{S}}} $ $ 11.024\pm 0.008 $ $ {\rm{GeV}} $
    $ \mit \Lambda $ $ 2.448\pm 0.001 $ $ {\rm{GeV}} $
    $ \mit \Gamma_1 $ $ 0.029\pm 0.017 $ $ {\rm{GeV}} $
    $ \mit \Gamma_2 $ $ 0.033\pm 0.010 $ $ {\rm{GeV}} $
    $ \mit \Gamma_3 $ $ 0.139\pm 0.025 $ $ {\rm{GeV}} $
    $ \mit \Gamma_4 $ $ 0.027\pm 0.015 $ $ {\rm{GeV}} $
    $ \dfrac{\chi^2}{{\rm{d.o.f}}} $ 3.37 $ - $
    DownLoad: CSV

    表 2  物理黎曼面$ R_{+++} $, 离物理黎曼面近的黎曼面 $ R_{-++}, R_{–+}, R_{---} $上的极点(第2列)和主要耦合道及其有效耦合常数(第3列)

    Table 2.  Poles on the physical sheet $ R_{+++} $, those $ R_{-++}, R_{-+}, R_{---} $ close to the physical one (the second column), the dominant channel with the corresponding effective coupling (the third column)

    黎曼面 极点/GeV D.C.($ g^{\rm{eff}} $/$ {\rm{MeV}}^{-1/2} $)
    $ R_{+++} $ $ 10.638-0.000 {\rm{i}} $ ($ {\rm{B}}^*\bar{{\rm{B}}}^*)^{s=0} $ [0.52]
    $ 10.871-0.014 {\rm{i}} $ $ {\rm{B}}\bar{{\rm{B}}}^* $ [0.05]
    $ 11.024-0.009 {\rm{i}} $ ($ {\rm{B}}^*\bar{{\rm{B}}}^*)^{s=2} $ [0.06]
    $ R_{-++} $ $ 10.876-0.016 {\rm{i}} $ (${\rm{B}}^*\bar{{\rm{B}}}^*)^{s=2} $ [0.03]
    $ 11.024-0.008 {\rm{i}} $ ($ {\rm{B}}^*\bar{{\rm{B}}}^*)^{s=2} $ [0.05]
    $ R_{--+} $ $ 10.873-0.021 {\rm{i}} $ ($ {\rm{B}}^*\bar{{\rm{B}}}^*)^{s=2} $ [0.01]
    $ 11.018-0.008 {\rm{i}} $ ($ {\rm{B}}^*\bar{{\rm{B}}}^*)^{s=0} $ [0.00]
    $ R_{---} $ $ 10.587-0.00 {\rm{i}} $ $ {\rm{B}}\bar{{\rm{B}}}^* $ [0.01]
    $ 10.635-0.033 {\rm{i}} $ ($ {\rm{B}}^*\bar{{\rm{B}}}^*)^{s=2} $ [0.01]
    $ 10.846-0.090 {\rm{i}} $ ($ {\rm{B}}^*\bar{{\rm{B}}}^*)^{s=0} $ [0.00]
    $ 10.871-0.020 {\rm{i}} $ ($ {\rm{B}}^*\bar{{\rm{B}}}^*)^{s=2} $ [0.01]
    DownLoad: CSV
  • [1]

    Gell-Mann M 1964 Phys. Lett. 8 214Google Scholar

    [2]

    Zweig G 1964 An SU(3) model for strong interaction symmetry and its breaking CM-P0004288

    [3]

    Choi S K, Olsen S L, Abe K, et al. 2003 Phys. Rev. Lett. 91 262001Google Scholar

    [4]

    Chen H X, Chen W, Liu X, Zhu S L 2016 Phys. Rep. 639 1Google Scholar

    [5]

    Chen H X, Chen W, Liu X, Liu Y R, Zhu S L 2017 Rep. Prog. Phys. 80 076201Google Scholar

    [6]

    Dong Y, Faessler A, Lyubovitskij V E 2017 Prog. Part. Nucl. Phys. 94 282Google Scholar

    [7]

    Lebed R F, Mitchell R E, Swanson E S 2017 Prog. Part. Nucl. Phys. 93 143Google Scholar

    [8]

    Guo F K, Hanhart C, Meißner U G, Wang Q, Zhao Q, Zou B S 2018 Rev. Mod. Phys. 90 015004Google Scholar

    [9]

    Liu Y R, Chen H X, Chen W, Liu X, Zhu S L 2019 Prog. Part. Nucl. Phys. 107 237Google Scholar

    [10]

    Albuquerque R M, Dias J M, Khemchandani K P, Torres A M, Navarra F S, Nielsen M, Zanetti C M 2019 J. Phys. G 46 093002Google Scholar

    [11]

    Yamaguchi Y, Hosaka A, Takeuchi S, Takizawa M 2020 J. Phys. G 47 053001Google Scholar

    [12]

    Guo F K, Liu X H, Sakai S 2020 Prog. Part. Nucl. Phys. 112 103757Google Scholar

    [13]

    Brambilla N, Eidelman S, Hanhart C, Nefediev A, Shen C P, Thomas C E, Vairo A, Yuan C Z 2020 Phys. Rep. 873 1Google Scholar

    [14]

    Zou B S 2021 Sci. Bull. 66 1258Google Scholar

    [15]

    Wang Q, Hanhart C, Zhao Q 2013 Phys. Rev. Lett. 111 132003Google Scholar

    [16]

    Guo F K, Hanhart C, Meißner U G, Wang Q, Zhao Q 2013 Phys. Lett. B 725 127Google Scholar

    [17]

    Cleven M, Wang Q, Guo F K, Hanhart C, Meißner U G, Zhao Q 2014 Phys. Rev. D 90 074039Google Scholar

    [18]

    Wang Q, Cleven M, Guo F K, Hanhart C, Meißner U G, Wu X G, Zhao Q 2014 Phys. Rev. D 89 034001Google Scholar

    [19]

    Wu X G, Hanhart C, Wang Q, Zhao Q 2014 Phys. Rev. D 89 054038Google Scholar

    [20]

    Chen Y H, Dai L Y, Guo F K, Kubis B 2019 Phys. Rev. D 99 074016Google Scholar

    [21]

    Xue S R, Jing H J, Guo F K, Zhao Q 2018 Phys. Lett. B 779 402Google Scholar

    [22]

    Lu Y, Anwar M N, Zou B S 2017 Phys. Rev. D 96 114022Google Scholar

    [23]

    Qin W, Xue S R, Zhao Q 2017 JPS Conf. Proc. 13 020022Google Scholar

    [24]

    Cleven M, Zhao Q 2017 Phys. Lett. B 768 52Google Scholar

    [25]

    Qin W, Xue S R, Zhao Q 2016 Phys. Rev. D 94 054035Google Scholar

    [26]

    Li G, An C S, Li P Y, Liu D, Zhang X, Zhou Z 2015 Chin. Phys. C 39 063102Google Scholar

    [27]

    Li G, Liu X H 2013 Phys. Rev. D 88 094008Google Scholar

    [28]

    Li X, Voloshin M B 2013 Phys. Rev. D 88 034012Google Scholar

    [29]

    Dong X K, Lin Y H, Zou B S 2020 Phys. Rev. D 101 076003Google Scholar

    [30]

    Cao Z, Zhao Q 2019 Phys. Rev. D 99 014016Google Scholar

    [31]

    Sanchez M, Geng L S, Lu J X, Hyodo T, Valderrama M P 2018 Phys. Rev. D 98 054001Google Scholar

    [32]

    Wang Q 2014 Phys. Rev. D 89 114013Google Scholar

    [33]

    Ji T, Dong X K, Guo F K, Zou B S 2022 Phys. Rev. Lett. 129 102002Google Scholar

    [34]

    Mizuk R, Bondar A, Adachi I, et al. 2021 JHEP 06 137Google Scholar

    [35]

    Du M L, Meißner U G, Wang Q 2016 Phys. Rev. D 94 096006Google Scholar

    [36]

    Voloshin M B 2012 Phys. Rev. D 85 034024Google Scholar

    [37]

    Du M L, Baru V, Guo F K, Hanhart C, Meißner U G, Oller J A, Wang Q 2020 Phys. Rev. Lett. 124 072001Google Scholar

    [38]

    Du M L, Baru V, Guo F K, Hanhart C, Meißner U G, Oller J A, Wang Q 2021 JHEP 08 157Google Scholar

    [39]

    Baru V, Epelbaum E, Filin A A, Hanhart C, Nefediev A V, Wang Q 2019 Phys. Rev. D 99 094013Google Scholar

    [40]

    Wang Q, Baru V, Filin A A, Hanhart C, Nefediev A V, Wynen J L 2018 Phys. Rev. D 98 074023Google Scholar

    [41]

    Workman R L, Burkert V D, Crede V, et al. 2022 PTEP 2022 083CGoogle Scholar

    [42]

    Mizuk R, Bondar A, Adachi I, et al. 2019 JHEP 10 220Google Scholar

    [43]

    Wang Q, Liu X H, Zhao Q 2011 Phys. Rev. D 84 014007Google Scholar

  • [1] Chu Peng-Cheng, Liu He, Du Xian-Bin. Quark matter and quark star in color-flavor-locked phase. Acta Physica Sinica, 2024, 73(5): 052101. doi: 10.7498/aps.73.20231649
    [2] Liu He, Chu Peng-Cheng. Elliptic flow splitting of charged pions in relativistic heavy-ion collisions. Acta Physica Sinica, 2023, 72(13): 132101. doi: 10.7498/aps.72.20230454
    [3] Sheng Xin-Li, Liang Zuo-Tang, Wang Qun. Global spin alignment of vector mesons in heavy ion collisions. Acta Physica Sinica, 2023, 72(7): 072502. doi: 10.7498/aps.72.20230071
    [4] Ruan Li-Juan, Xu Zhang-Bu, Yang Chi. Global polarization of hyperons and spin alignment of vector mesons in quark matters. Acta Physica Sinica, 2023, 72(11): 112401. doi: 10.7498/aps.72.20230496
    [5] Song Tong-Tong, Luo Jie, Lai Yun. Pseudo-local effect medium theory. Acta Physica Sinica, 2020, 69(15): 154203. doi: 10.7498/aps.69.20200196
    [6] Shen Wan-Ping, You Shi-Jia, Mao Hong. Phase structure and surface tension in quark meson model. Acta Physica Sinica, 2019, 68(18): 181101. doi: 10.7498/aps.68.20190798
    [7] Jirimutu, Aodeng, Xue Kang. Construction of Breit quark potential in coordinate space and mass splits of meson and quarkonium. Acta Physica Sinica, 2018, 67(9): 091201. doi: 10.7498/aps.67.20172155
    [8] Zhao Yun-Hui, Hai Wen-Hua, Zhu Qian-Quan. Multi-order corrections of variational-integral perturbation for heavy quarkonium. Acta Physica Sinica, 2009, 58(2): 734-739. doi: 10.7498/aps.58.734
    [9] Lai Xiang-Jun, Luo Zhi-Quan, Liu Jing-Jing, Liu Hong-Lin. Quark phase transition in supernova and the effect of quark mass on the process. Acta Physica Sinica, 2008, 57(3): 1535-1541. doi: 10.7498/aps.57.1535
    [10] Feng Xue-Chao, Li De-Min. On the mass of the ss member of the 31S0 meson nonet. Acta Physica Sinica, 2005, 54(9): 4084-4086. doi: 10.7498/aps.54.4084
    [11] Chen Hong, Mei Hua, Shen Peng-Nian, Jiang Huan-Qing. Heavy quarkonium mass spectra in a relativistic quark model. Acta Physica Sinica, 2005, 54(3): 1136-1141. doi: 10.7498/aps.54.1136
    [12] WANG YOU-NIAN, MA TENG-CAI, GONG YE. ELECTRONIC STOPPING POWER AND EFFECTIVE CHARGE OF HEAVY ION-BEAM IN HOT TARGETS. Acta Physica Sinica, 1993, 42(4): 631-639. doi: 10.7498/aps.42.631
    [13] XIE FENG-XIAN. CALCULATION OF THE SPECTRA FOR TOPPONIUM WITH A NONZERO GLUON EFFECTIVE MASS. Acta Physica Sinica, 1987, 36(6): 778-784. doi: 10.7498/aps.36.778
    [14] Dong Shao-jing. THE CALCULATION OF HEAVY QUARK FORCE AND POTENTIAL IN SU(2) LATTICE GAUGE THEORY. Acta Physica Sinica, 1986, 35(9): 1248-1252. doi: 10.7498/aps.35.1248
    [15] LIN DA-HANG, XIE FENG-XIAN. A QUARKONIUM POTENTIAL MODEL WITH A NON-ZERO GLUON EFFECTIVE MASS. Acta Physica Sinica, 1984, 33(11): 1569-1580. doi: 10.7498/aps.33.1569
    [16] HE ZUO-XIU, LIN DA-HANG, ZHAO PEI-ZHEN. QUARKONIUM POTENTIAL MODEL WITH A NON-ZERO GLUON EFFECTIVE MASS. Acta Physica Sinica, 1982, 31(4): 525-531. doi: 10.7498/aps.31.525
    [17] WANG JIA-ZHU, BI PIN-ZHEN, YIN PENG-CHENG. PROLATE ELLIPSOLIDAL BAG MODEL FOR THE HADRON WITH HEAVY QUARKNIUM. Acta Physica Sinica, 1981, 30(12): 1707-1712. doi: 10.7498/aps.30.1707
    [18] Lü MIN, CHENG JEN-CHI, LI HO-NIAN. A STUDY OF Λ0 AND θ0 PARTICLES PRODUCED IN Pb AND Al. Acta Physica Sinica, 1959, 15(5): 230-245. doi: 10.7498/aps.15.230
    [19] Wang Kan-chang, Hsiao Chien, Cheng Jea-chi, Lü Min. DECAY OF A NEUTRAL HEAVY MESON. Acta Physica Sinica, 1955, 11(6): 493-498. doi: 10.7498/aps.11.493
    [20] NING HU. THE S-MATRIX IN MESON THEORY. Acta Physica Sinica, 1951, 8(1): 39-56. doi: 10.7498/aps.8.39
Metrics
  • Abstract views:  2334
  • PDF Downloads:  79
  • Cited By: 0
Publishing process
  • Received Date:  31 May 2023
  • Accepted Date:  15 October 2023
  • Available Online:  19 October 2023
  • Published Online:  20 October 2023

/

返回文章
返回