Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study of static dipole polarizabilities and hyperpolarizability of B2+ and B+ ions

Chen Chi-Ting Wu Lei Wang Xia Wang Ting Liu Yan-Jun Jiang Jun Dong Chen-Zhong

Citation:

Theoretical study of static dipole polarizabilities and hyperpolarizability of B2+ and B+ ions

Chen Chi-Ting, Wu Lei, Wang Xia, Wang Ting, Liu Yan-Jun, Jiang Jun, Dong Chen-Zhong
PDF
HTML
Get Citation
  • The wave functions, energy levels, and oscillator strengths of B2+ ions and B+ ions are calculated by using a relativistic potential model, which is named the relativistic configuration interaction plus core polarization (RCICP) method.The presently calculated energy levels are in very good agreement with experimental energy levels tabulated in NIST Atomic Spectra Database, with difference no more than 0.05%.The presently calculated oscillator strengths agree very well with NIST and some available theoretical results. The difference is no more than 0.6%. By using these energy levels and oscillator strengths, the electric-dipole static polarizability of the 2s1/2, 2p1/2, 2p3/2, and 3s1/2 state and static hyperpolarizability of the ground state 2s1/2 for B2+ ion, as well as electric-dipole static polarizability of the 2s2 1S0 state and 2s2p 3P0 state for B+ ion are determined, respectively. The polarizability of the 2p1/2 state and 2p3/2 state of B2+ ion are negative. The main reason is that the absorption energy of the 2p1/2,3/2 → 2s1/2 resonance transition is negative. The contribution to the polarizability of the 2p1/2 state and 2p3/2 state are both negative. For the tensor polarizability of the 2p3/2 state, the main contribution from the 2p3/2 → 2s1/2 transition and 2p3/2 → 3d5/2 transition are 2.4963 a.u. and –0.2537 a.u., respectively, and the present RCICP result is 2.1683 a.u. The largest contribution to the hyperpolarizability of the ground state 2s1/2 originates from the term of $ {\alpha }^{1}{\beta }_{0} $. The electric-dipole static polarizability of the 2s2 1S0 state and 2s2p 3P0 state of B+ ion are 9.6220 a.u. and 7.7594 a.u., respectively. The presently calculated blackbody radiation (BBR) shift of the 2s2p 3P0 → 2s2 1S0 clock transition is 0.01605 Hz. This BBR shift is one or two orders of magnitude smaller than that for alkaline-earth-metal atom.
      Corresponding author: Jiang Jun, phyjiang@yeah.net
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602500), the National Natural Science Foundation of China (Grant No. 12174316), the Young Teachers Scientific Research Ability Promotion Plan of Northwest Normal University, China (Grant No. NWNU-LKQN2020-10), and the Funds for Innovative Fundamental Research Group Project of Gansu Province, China (Grant No. 20JR5RA541).
    [1]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201Google Scholar

    [2]

    Yamanaka K, Ohmae N, Ushijima I, Takamoto M, Katori H 2015 Phys. Rev. Lett. 114 230801Google Scholar

    [3]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802Google Scholar

    [4]

    Dubé P, Madej A A, Zhou Z, Bernard J E 2013 Phys. Rev. A 87 023806Google Scholar

    [5]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 6151Google Scholar

    [6]

    Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A, Ye J 2022 Nature 602 7897

    [7]

    McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 564 7734

    [8]

    Bregolin F, Milani G, Pizzocaro M, Rauf B, Thoumany P, Levi F, Calonico D 2017 J. Phys. Conf. Ser. 841 012015Google Scholar

    [9]

    Pihan-Le Bars H, Guerlin C, Lasseri R D, Ebran J P, Bailey Q G, Bize S, Khan E, Wolf P 2017 Phys. Rev. D 95 075026Google Scholar

    [10]

    Shaniv R, Ozeri R, Safronova M S, Porsev S G, Dzuba V A, Flambaum V V, Häffner H 2018 Phys. Rev. Lett. 120 103202Google Scholar

    [11]

    Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K, Gill P 2014 Phys. Rev. Lett. 113 210801Google Scholar

    [12]

    Safronova M S, Porsev S G, Sanner C, Ye J 2018 Phys. Rev. Lett. 120 173001Google Scholar

    [13]

    Arvanitaki A, Huang J, Tilburg K V 2015 Phys. Rev. D 91 015015Google Scholar

    [14]

    Roberts B M, Blewitt G, Dailey C, Murphy M, Pospelov M, Rollings A, Sherman J, Williams W, Derevianko A 2017 Nat. Commun. 8 1195Google Scholar

    [15]

    Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, Ye J 2016 Phys. Rev. D 94 124043Google Scholar

    [16]

    Kassimi N E, Thakkar A J 1994 Phys. Rev. A 50 2948Google Scholar

    [17]

    Flury J 2016 J. Phys. Conf. Ser. 723 012051Google Scholar

    [18]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 5871Google Scholar

    [19]

    Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001Google Scholar

    [20]

    Porsev S G, Derevianko A 2006 Phys. Rev. A 74 020502Google Scholar

    [21]

    Leggett A J 2001 Rev. Mod. Phys. 73 307Google Scholar

    [22]

    Derevianko A, Porsev S G, Kotochigova S, Tiesinga E, Julienne P S 2003 Phys. Rev. Lett. 90 063002Google Scholar

    [23]

    Jones K M, Tiesinga E, Lett P D, Julienne P S 2006 Rev. Mod. Phys. 78 483Google Scholar

    [24]

    Westergaard P G, Lodewyck J, Lorini L, Lecallier A, Burt E A, Zawada M, Millo J, Lemonde P 2011 Phys. Rev. Lett. 106 210801Google Scholar

    [25]

    Barber Z W, Stalnaker J E, Lemke N D, Poli N, Oates C W, Fortier T M, Diddams S A, Hollberg L, Hoyt C W, Taichenachev A V, Yudin V I 2008 Phys. Rev. Lett. 100 103002Google Scholar

    [26]

    Brusch A, Le Targat R, Baillard X, Fouché M, Lemonde P 2006 Phys. Rev. Lett. 96 103003Google Scholar

    [27]

    Mitroy J, Safronova M S, Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001Google Scholar

    [28]

    Safronova M S, Safronova U I, Clark C W 2012 Phys. Rev. A 86 042505Google Scholar

    [29]

    Kumar R, Chattopadhyay S, Mani B K, Angom D 2020 Phys. Rev. A 101 012503Google Scholar

    [30]

    Johnson W R, Kolb D, Huang K-N 1983 At. Data Nucl. Data Tables 28 2Google Scholar

    [31]

    Grant I P, Quiney H M 2000 Phys. Rev. A 62 022508Google Scholar

    [32]

    Bromley M W J, Mitroy J 2001 Phys. Rev. A 65 012505Google Scholar

    [33]

    Kramida A E, Ryabtsev A N, Ekberg J O, Kink I, Mannervik S, Martinson I 2008 Phys. Scr. 78 025301Google Scholar

    [34]

    Tang L Y, Yan Z C, Shi T Y, Babb J F 2009 Phys. Rev. A 79 062712Google Scholar

    [35]

    Tang L Y, Zhang J Y, Yan Z C, Shi T Y, Babb J F, Mitroy J 2009 Phys. Rev. A 80 042511Google Scholar

    [36]

    Tang L Y, Yan Z C, Shi T Y, Mitroy J 2010 Phys. Rev. A 81 042521Google Scholar

    [37]

    Tang L Y, Yan Z C, Shi T Y, Babb J F 2014 Phys. Rev. A 90 012524Google Scholar

    [38]

    Hameed S, Herzenberg A, James M G 1968 J. Phys. B: At. Mol. Opt. Phys. 1 822Google Scholar

    [39]

    Hafner P, Schwarz W H E 1978 J. Phys. B: At. Mol. Opt. Phys. 11 2975Google Scholar

    [40]

    Mitroy J, Griffin D C, Norcross D W, Pindzola M S 1988 Phys. Rev. A 38 3339Google Scholar

    [41]

    Kramida A, Ralchenko Yu, Reader J NIST ASD Team. https://physics.nist.gov/asd [2019-9-10]

    [42]

    Johnson W R, Liu Z W, Sapirstein J 1996 At. Data Nucl. Data Tables 64 279Google Scholar

    [43]

    Yan Z C, Tambasco M, Drake G W F 1998 Phys. Rev. A 57 1652Google Scholar

    [44]

    Wang Z W, Chung K T 1994 J. Phys. B: At. Mol. Opt. Phys. 27 855Google Scholar

    [45]

    Cheng Y, Mitroy J 2012 Phys. Rev. A 86 052505Google Scholar

    [46]

    Pipin J, Woźnicki W 1983 Chem. Phys. Lett. 95 392Google Scholar

    [47]

    Earwood W P, Davis S R 2022 At. Data Nucl. Data Tables 144 101490Google Scholar

    [48]

    Safronova U I, Safronova M S 2013 Phys. Rev. A 87 032502Google Scholar

    [49]

    Roy H P, Bhattacharya A K 1976 Mol. Phys. 31 649Google Scholar

    [50]

    Drake G W F, Cohen M 1968 J. Chem. Phys. 48 1168Google Scholar

    [51]

    Ryabtsev A N, Kink I, Awaya Y, Ekberg J O, Mannervik S, Ölme A, Martinson I 2005 Phys. Scr. 71 489Google Scholar

    [52]

    Chen M K 1999 Phys. Scr. T80 485Google Scholar

    [53]

    Fischer C F, Tachiev G 2004 At. Data Nucl. Data Tables 87 1Google Scholar

    [54]

    Jönsson P, Fischer C F, Godefroid M R 1999 J. Phys. B: At. Mol. Opt. Phys. 32 1233Google Scholar

    [55]

    Safronova M S, Kozlov M G, Clark C W 2011 Phys. Rev. Lett. 107 143006Google Scholar

    [56]

    Archibong E F, Thakkar A J 1990 Chem. Phys. Lett. 173 579Google Scholar

    [57]

    Singh Y, Sahoo B K 2014 Phys. Rev. A 90 022511Google Scholar

    [58]

    Chen C, Gou B C 2018 Commun. Theor. Phys. 70 765Google Scholar

    [59]

    Arora B, Safronova M S, Clark C W 2007 Phys. Rev. A 76 064501Google Scholar

    [60]

    Jiang D, Arora B, Safronova M S, Clark C W 2009 J. Phys. B: At. Mol. Opt. Phys. 42 154020Google Scholar

  • 表 1  B2+离子的截断参数$ {\rho }_{l, j} $(单位: a.u.)

    Table 1.  Cut-off parameters $ {\rho }_{l, j} $ of B2+ ions (in a.u.).

    Statej$ {\rho }_{l, j} $
    2s1/20.72951
    2p1/20.67398
    3/20.67164
    3d3/20.91441
    5/20.91355
    DownLoad: CSV

    表 2  B2+离子的基态和部分低激发态相对于原子实的能级, 实验值(Expt.) [33]是来自于NIST的数据(单位: a.u.), “Diff.”表示用RCICP方法计算的结果与NIST结果之差的百分比

    Table 2.  Energy levels of the ground state and some low-lying states of B2+ ions relative to atomic core. Experimental values (Expt.) [33] are from the NIST data (in a.u.). “Diff.” denotes the difference in percentage from calculated by RCICP method and NIST results.

    StatejRCICPExpt.[33]Diff./%
    2s1/2–1.3939235–1.39392350
    2p1/2–1.1735867–1.17358670
    3/2–1.1734313–1.17343130
    3s1/2–0.5728008–0.57286320.01
    3p1/2–0.5146980–0.51477300.01
    3/2–0.5146520–0.51472740.01
    3d3/2–0.5005686–0.50056860
    5/2–0.5005553–0.50055530
    4s1/2–0.3108609–0.31089050.01
    4p1/2–0.2874707–0.28750980.01
    3/2–0.2874514–0.28749200.01
    4d3/2–0.2815308–0.28153240
    5/2–0.2815252–0.28152680
    4f5/2–0.2812848–0.28127050.01
    7/2–0.2812820–0.28126760.01
    5s1/2–0.1948639–0.19487930.01
    5p1/2–0.1831864–0.18320670.01
    3/2–0.1831765–0.18319700.01
    5d3/2–0.1801535–0.18015520
    5/2–0.1801507–0.18015230
    5f5/2–0.1800204–0.18001380
    7/2–0.1800190–0.18001240
    DownLoad: CSV

    表 3  B2+离子基态和部分低激发态之间跃迁的振子强度, “Diff.”表示用RCICP方法计算的结果与NIST结果[41]之差的百分比

    Table 3.  Oscillator strengths of transitions between the ground state and some low-lying states of B2+ ions. “Diff.” represents the difference in percentage form calculated by RCICP method and NIST results.

    TransitionsRCICPRMBPT[42]HR[43]NIST[41]Diff./%
    2s1/2→2p1/20.1212510.1211010.1210760.120990.22
    2s1/2→2p3/20.2427230.2425010.2423990.242150.24
    2s1/2→3p1/20.0510840.051080.01
    2s1/2→3p3/20.1020610.102400.33
    2p1/2→3s1/20.0463080.0462880.046360.11
    2p1/2→3d3/20.6379370.638000.01
    2p1/2→4s1/20.0081930.0082330.49
    2p1/2→4d3/20.1225730.122800.19
    2p3/2→3s1/20.0463460.0463380.046360.03
    2p3/2→3d3/20.0638060.063810.01
    2p3/2→3d5/20.5742840.574300
    2p3/2→4s1/20.0081980.0082360.46
    2p3/2→4d3/20.0122560.012280.20
    2p3/2→4d5/20.1103230.110500.16
    3s1/2→3p1/20.2032930.203100.10
    3s1/2→3p3/20.4069420.40680.04
    3s1/2→4p1/20.0487450.048500.51
    3s1/2→4p3/20.0973570.097000.37
    DownLoad: CSV

    表 4  B2+离子基态与部分低激发态的静态电偶极标量极化率与张量极化率以及主要跃迁的贡献(单位: a.u.)

    Table 4.  Static electric-dipole scalar and tensor polarizability of the ground state and some low-lying state of B2+ ions and breakdowns of the contributions of individual transitions (in a.u.).

    2s1/22p1/22p3/2 3s1/2
    Contr.$ {\alpha }_{}^{{\rm{S}}} $FCPC [44]Contr.$ {\alpha }_{}^{{\rm{S}}} $Contr.$ {\alpha }_{}^{{\rm{S}}} $$ {\alpha }^{{\rm{T}}} $Contr.$ {\alpha }_{}^{{\rm{S}}} $
    2p1/22.49752.4953[44]2s1/2–2.49752s1/2–2.49632.49633p1/260.218
    2p3/24.99264.9872[44]3d3/21.40843d5/21.2684–0.25373p3/2120.35
    Remains0.34330.3453[44]Remains0.4959Remains0.6371–0.0743Remains2.3125
    Core[30]0.01950.0195[44]Core0.0195Core0.0195Core0.0195
    Total7.85297.8473[44]Total–0.5737Total–0.57132.1683Total182.90
    CICP[45]7.8460–0.56938182.94
    SCC[46]7.85
    FCG[47]7.8591
    DownLoad: CSV

    表 5  B2+离子基态的超极化率及其中间态对超极化率的贡献(单位: a.u.)

    Table 5.  Hyperpolarizability of the ground state of B2+ ion and the contributions to the hyperpolarizability (in a.u.).

    Contributions$ {\gamma }_{0}\left(2{\rm{s}}\right) $$ {\gamma }_{0}^{{\rm{C}}}\left(2{\rm{s}}\right) $
    $ \dfrac{1}{18}T({\rm{s}}, {{\rm{p}}}_{1/2}, {\rm{s}}, {{\rm{p}}}_{1/2}) $1.251(1)1.250
    $ -\dfrac{1}{18}T({\rm{s}}, {{\rm{p}}}_{1/2}, {\rm{s}}, {{\rm{p}}}_{3/2}) $2.501(1)2.500
    $ -\dfrac{1}{18}T({\rm{s}}, {{\rm{p}}}_{3/2}, {\rm{s}}, {{\rm{p}}}_{1/2}) $2.501(1)2.500
    $ \dfrac{1}{18}T({\rm{s}}, {{\rm{p}}}_{3/2}, {\rm{s}}, {{\rm{p}}}_{3/2}) $5.001(1)5.000
    $T({\rm{s} }, { {\rm{p} } }_{ {j}^{'} }, {\rm{s} }, { {\rm{p} } }_{ {j}^{''} })$11.255(5)11.250
    $\dfrac{1}{18}T({\rm{s} }, { {\rm{p} } }_{1/2}{, {\rm{d} } }_{3/2}, { {\rm{p} } }_{1/2})$9.588(8)9.580
    $\dfrac{1}{18\sqrt{10} }T({\rm{s} }, { {\rm{p} } }_{1/2}{, {\rm{d} } }_{3/2}, { {\rm{p} } }_{3/2})$1.917(2)1.915
    $\dfrac{1}{18\sqrt{10} }T({\rm{s} }, { {\rm{p} } }_{3/2}{, {\rm{d} } }_{3/2}, { {\rm{p} } }_{1/2})$1.917(2)1.915
    $\dfrac{1}{180}T({\rm{s} }, { {\rm{p} } }_{3/2}{, {\rm{d} } }_{3/2}, { {\rm{p} } }_{3/2})$0.383(1)0.382
    $\dfrac{1}{30}T({\rm{s} }, { {\rm{p} } }_{3/2}{, {\rm{d} } }_{5/2}, { {\rm{p} } }_{3/2})$20.692(16)20.676
    $T({\rm{s} }, { {\rm{p} } }_{ {j}^{'} }{, {\rm{d} } }_{j}, { {\rm{p} } }_{ {j}^{''} })$34.497(28)34.469
    $ {\alpha }^{1}{\beta }_{0} $134.364(586)133.778
    RCICP–1063.346(6.645)–1056.701
    UCHF[50]–1160
    CHF[49]–1120
    DownLoad: CSV

    表 6  B+基态和部分低激发态相对于原子实的能级值, 实验值(Expt.) [51]是来自于NIST的数据(单位: a.u.), “Diff.”表示用RCICP方法计算的结果与NIST结果之差的百分比

    Table 6.  Energy levels of the ground state and some low-lying states of B+ ions relative to atomic core. Experimental values (Expt.) are from the NIST data (in a.u.). “Diff.” denotes the difference in percentage from calculated by RCICP method and NIST results.

    StateRCICPExpt.[51]Diff./%
    2$ {{\rm{s}}}^{2}{{}_{}{}^{1}{\rm{S}}}_{0} $–2.318347–2.3183470
    2s2p$ {{}_{}{}^{3}{\rm{P}}}_{0} $–2.148235–2.1482330
    2s2p$ {{}_{}{}^{3}{\rm{P}}}_{1} $–2.148205–2.1482050
    2s2p$ {{}_{}{}^{3}{\rm{P}}}_{2} $–2.148178–2.1481320
    2s2p$ {{}_{}{}^{1}{\rm{P}}}_{1} $–1.9832–1.9839270.03
    2$ {{\rm{p}}}^{2}{{}_{}{}^{3}{\rm{P}}}_{0} $–1.867621–1.8676730
    2$ {{\rm{p}}}^{2}{{}_{}{}^{3}{\rm{P}}}_{1} $–1.867634–1.8676340
    2$ {{\rm{p}}}^{2}{{}_{}{}^{3}{\rm{P}}}_{2} $–1.867565–1.8675730
    2$ {{\rm{p}}}^{2}{{}_{}{}^{1}{\rm{D}}}_{2} $–1.852917–1.8519470.05
    2$ {{\rm{p}}}^{2}{{}_{}{}^{1}{\rm{S}}}_{0} $–1.736452–1.7366790.01
    2s3s $ {{}_{}{}^{3}{\rm{S}}}_{1} $–1.727042–1.7270530
    2s3s $ {{}_{}{}^{1}{\rm{S}}}_{0} $–1.690800–1.6912930.03
    2s3p $ {{}_{}{}^{3}{\rm{P}}}_{0} $–1.662206–1.6622800
    2s3p $ {{}_{}{}^{3}{\rm{P}}}_{1} $–1.662167–1.6622770.01
    2s3p $ {{}_{}{}^{3}{\rm{P}}}_{2} $–1.662006–1.6622610.02
    2s3p $ {{}_{}{}^{1}{\rm{P}}}_{1} $–1.661601–1.6617650.01
    2s3d $ {{}_{}{}^{3}{\rm{D}}}_{1} $–1.631934–1.6319360
    2s3d $ {{}_{}{}^{3}{\rm{D}}}_{2} $–1.631720–1.6319360.01
    2s3d $ {{}_{}{}^{1}{\rm{D}}}_{2} $–1.613116–1.6135450.03
    $ 2{\rm{s}}4{\rm{s}}{{}_{}{}^{3}{\rm{S}}}_{1} $–1.560411–1.5604230
    $ 2{\rm{s}}4{\rm{s}}{{}_{}{}^{1}{\rm{S}}}_{0} $–1.552914–1.5531770.02
    $ 2{\rm{s}}4{\rm{p}} $ $ {{}_{}{}^{1}{\rm{P}}}_{1} $–1.540973–1.5410750.01
    $ 2{\rm{s}}4{\rm{p}} $ $ {{}_{}{}^{3}{\rm{P}}}_{1} $–1.5366–1.53670.01
    $ 2{\rm{s}}4{\rm{p}} $ $ {{}_{}{}^{3}{\rm{P}}}_{2} $–1.536439–1.5367260.02
    $ 2{\rm{s}}4{\rm{p}} $ $ {{}_{}{}^{3}{\rm{P}}}_{0} $–1.536693–1.5367260
    $ 2{\rm{s}}4{\rm{d}} $ $ {{}_{}{}^{3}{\rm{D}}}_{2} $–1.524938–1.5252100.02
    $ 2{\rm{s}}4{\rm{d}} $ $ {{}_{}{}^{3}{\rm{D}}}_{1} $–1.525198–1.5252100
    DownLoad: CSV

    表 7  B+离子基态和部分低激发态之间电偶极跃迁的振子强度(单位: a.u.)

    Table 7.  Oscillator strengths of electric-dipole transitions between the ground state and some low-lying states of B+ ions (in a.u.).

    TransitionRCICPCICP[45]BCICP[52]MCHF-BP[53]MCHF[54]NIST.[41]
    2s2 1S0 2s2p 1P11.000920.999071.0021.0010.9976(22)0.9990
    2s2 1S0→2s3p 1P10.108290.109590.1080.10870.1093(3)0.1090
    2s2 1S0→2s4p 1P10.053310.05300.0514
    2s2 1S02s5p 1P10.022440.02300.0241
    2s2p 3P02p2 3P10.341130.342980.3650.34300.3427(2)0.3400
    2s2p 3P0 2s3s 3S10.064370.063770.063970.0640
    2s2p 3P02s3d 3D10.476570.476270.4730.47590.4750
    2s2p 3P02s4s 3S10.011700.0115
    2s2p 3P02s4d 3D10.124800.1250.1260
    DownLoad: CSV

    表 8  B+离子2s2 1S0 和2s2p 3P0的电偶极极化率

    Table 8.  Electric-dipole polarizability of 2s2 1S0 and 2s2p 3P0 states of B+ ions

    2s2 1S02s2p 3P0
    Contributions polarizability/a.u.Contributions polarizability/a.u.
    2s2 1S0→2s2p 1P18.91492s2p 3P0→2p2p 3P14.3326
    2s2 1S0→2s3p 1P10.25112s2p 3P0→2s3d 3D11.7878
    Remains0.4365Remains1.6195
    Core0.0195Core0.0195
    RCICP9.6220RCICP7.7594
    CI[55]9.5750CI[55]7.7790
    CI+MBPT[55]9.6130CI+MBPT[55]7.7690
    CI+all-orders[55]9.6240CI+all-order[55]7.7720
    CCD+ST [56]9.5660
    CICP[45]9.6441CICP[45]7.7798
    PRCC[29]9.4130
    CCSDpT[57]10.395(22)
    RRV[58]9.6210
    DownLoad: CSV
  • [1]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201Google Scholar

    [2]

    Yamanaka K, Ohmae N, Ushijima I, Takamoto M, Katori H 2015 Phys. Rev. Lett. 114 230801Google Scholar

    [3]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802Google Scholar

    [4]

    Dubé P, Madej A A, Zhou Z, Bernard J E 2013 Phys. Rev. A 87 023806Google Scholar

    [5]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 6151Google Scholar

    [6]

    Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A, Ye J 2022 Nature 602 7897

    [7]

    McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 564 7734

    [8]

    Bregolin F, Milani G, Pizzocaro M, Rauf B, Thoumany P, Levi F, Calonico D 2017 J. Phys. Conf. Ser. 841 012015Google Scholar

    [9]

    Pihan-Le Bars H, Guerlin C, Lasseri R D, Ebran J P, Bailey Q G, Bize S, Khan E, Wolf P 2017 Phys. Rev. D 95 075026Google Scholar

    [10]

    Shaniv R, Ozeri R, Safronova M S, Porsev S G, Dzuba V A, Flambaum V V, Häffner H 2018 Phys. Rev. Lett. 120 103202Google Scholar

    [11]

    Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K, Gill P 2014 Phys. Rev. Lett. 113 210801Google Scholar

    [12]

    Safronova M S, Porsev S G, Sanner C, Ye J 2018 Phys. Rev. Lett. 120 173001Google Scholar

    [13]

    Arvanitaki A, Huang J, Tilburg K V 2015 Phys. Rev. D 91 015015Google Scholar

    [14]

    Roberts B M, Blewitt G, Dailey C, Murphy M, Pospelov M, Rollings A, Sherman J, Williams W, Derevianko A 2017 Nat. Commun. 8 1195Google Scholar

    [15]

    Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, Ye J 2016 Phys. Rev. D 94 124043Google Scholar

    [16]

    Kassimi N E, Thakkar A J 1994 Phys. Rev. A 50 2948Google Scholar

    [17]

    Flury J 2016 J. Phys. Conf. Ser. 723 012051Google Scholar

    [18]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 5871Google Scholar

    [19]

    Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001Google Scholar

    [20]

    Porsev S G, Derevianko A 2006 Phys. Rev. A 74 020502Google Scholar

    [21]

    Leggett A J 2001 Rev. Mod. Phys. 73 307Google Scholar

    [22]

    Derevianko A, Porsev S G, Kotochigova S, Tiesinga E, Julienne P S 2003 Phys. Rev. Lett. 90 063002Google Scholar

    [23]

    Jones K M, Tiesinga E, Lett P D, Julienne P S 2006 Rev. Mod. Phys. 78 483Google Scholar

    [24]

    Westergaard P G, Lodewyck J, Lorini L, Lecallier A, Burt E A, Zawada M, Millo J, Lemonde P 2011 Phys. Rev. Lett. 106 210801Google Scholar

    [25]

    Barber Z W, Stalnaker J E, Lemke N D, Poli N, Oates C W, Fortier T M, Diddams S A, Hollberg L, Hoyt C W, Taichenachev A V, Yudin V I 2008 Phys. Rev. Lett. 100 103002Google Scholar

    [26]

    Brusch A, Le Targat R, Baillard X, Fouché M, Lemonde P 2006 Phys. Rev. Lett. 96 103003Google Scholar

    [27]

    Mitroy J, Safronova M S, Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001Google Scholar

    [28]

    Safronova M S, Safronova U I, Clark C W 2012 Phys. Rev. A 86 042505Google Scholar

    [29]

    Kumar R, Chattopadhyay S, Mani B K, Angom D 2020 Phys. Rev. A 101 012503Google Scholar

    [30]

    Johnson W R, Kolb D, Huang K-N 1983 At. Data Nucl. Data Tables 28 2Google Scholar

    [31]

    Grant I P, Quiney H M 2000 Phys. Rev. A 62 022508Google Scholar

    [32]

    Bromley M W J, Mitroy J 2001 Phys. Rev. A 65 012505Google Scholar

    [33]

    Kramida A E, Ryabtsev A N, Ekberg J O, Kink I, Mannervik S, Martinson I 2008 Phys. Scr. 78 025301Google Scholar

    [34]

    Tang L Y, Yan Z C, Shi T Y, Babb J F 2009 Phys. Rev. A 79 062712Google Scholar

    [35]

    Tang L Y, Zhang J Y, Yan Z C, Shi T Y, Babb J F, Mitroy J 2009 Phys. Rev. A 80 042511Google Scholar

    [36]

    Tang L Y, Yan Z C, Shi T Y, Mitroy J 2010 Phys. Rev. A 81 042521Google Scholar

    [37]

    Tang L Y, Yan Z C, Shi T Y, Babb J F 2014 Phys. Rev. A 90 012524Google Scholar

    [38]

    Hameed S, Herzenberg A, James M G 1968 J. Phys. B: At. Mol. Opt. Phys. 1 822Google Scholar

    [39]

    Hafner P, Schwarz W H E 1978 J. Phys. B: At. Mol. Opt. Phys. 11 2975Google Scholar

    [40]

    Mitroy J, Griffin D C, Norcross D W, Pindzola M S 1988 Phys. Rev. A 38 3339Google Scholar

    [41]

    Kramida A, Ralchenko Yu, Reader J NIST ASD Team. https://physics.nist.gov/asd [2019-9-10]

    [42]

    Johnson W R, Liu Z W, Sapirstein J 1996 At. Data Nucl. Data Tables 64 279Google Scholar

    [43]

    Yan Z C, Tambasco M, Drake G W F 1998 Phys. Rev. A 57 1652Google Scholar

    [44]

    Wang Z W, Chung K T 1994 J. Phys. B: At. Mol. Opt. Phys. 27 855Google Scholar

    [45]

    Cheng Y, Mitroy J 2012 Phys. Rev. A 86 052505Google Scholar

    [46]

    Pipin J, Woźnicki W 1983 Chem. Phys. Lett. 95 392Google Scholar

    [47]

    Earwood W P, Davis S R 2022 At. Data Nucl. Data Tables 144 101490Google Scholar

    [48]

    Safronova U I, Safronova M S 2013 Phys. Rev. A 87 032502Google Scholar

    [49]

    Roy H P, Bhattacharya A K 1976 Mol. Phys. 31 649Google Scholar

    [50]

    Drake G W F, Cohen M 1968 J. Chem. Phys. 48 1168Google Scholar

    [51]

    Ryabtsev A N, Kink I, Awaya Y, Ekberg J O, Mannervik S, Ölme A, Martinson I 2005 Phys. Scr. 71 489Google Scholar

    [52]

    Chen M K 1999 Phys. Scr. T80 485Google Scholar

    [53]

    Fischer C F, Tachiev G 2004 At. Data Nucl. Data Tables 87 1Google Scholar

    [54]

    Jönsson P, Fischer C F, Godefroid M R 1999 J. Phys. B: At. Mol. Opt. Phys. 32 1233Google Scholar

    [55]

    Safronova M S, Kozlov M G, Clark C W 2011 Phys. Rev. Lett. 107 143006Google Scholar

    [56]

    Archibong E F, Thakkar A J 1990 Chem. Phys. Lett. 173 579Google Scholar

    [57]

    Singh Y, Sahoo B K 2014 Phys. Rev. A 90 022511Google Scholar

    [58]

    Chen C, Gou B C 2018 Commun. Theor. Phys. 70 765Google Scholar

    [59]

    Arora B, Safronova M S, Clark C W 2007 Phys. Rev. A 76 064501Google Scholar

    [60]

    Jiang D, Arora B, Safronova M S, Clark C W 2009 J. Phys. B: At. Mol. Opt. Phys. 42 154020Google Scholar

  • [1] Wang Ting, Jiang Li, Wang Xia, Dong Chen-Zhong, Wu Zhong-Wen, Jiang Jun. Theoretical study of polarizabilities and hyperpolarizabilities of Be+ ions and Li atoms. Acta Physica Sinica, 2021, 70(4): 043101. doi: 10.7498/aps.70.20201386
    [2] Shi Mao-Lei, Liu Lei, Tian Fang-Hui, Wang Peng-Fei, Li Jia-Jun, Ma Lei. Effect of lithium-free flux B2O3 on the ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Acta Physica Sinica, 2017, 66(20): 208201. doi: 10.7498/aps.66.208201
    [3] Chen Ze-Zhang. Theoretical study on the polarizability properties of liquid crystal in the THz range. Acta Physica Sinica, 2016, 65(14): 143101. doi: 10.7498/aps.65.143101
    [4] Wang Jie-Min, Feng Heng-Qiang, Sun Jin-Feng, Shi De-Heng, Li Wen-Tao, Zhu Zun-Lüe. A study on spectroscopic parameters of X2+, A2 and B2+ low-lying electronic states of SiN radical. Acta Physica Sinica, 2013, 62(1): 013105. doi: 10.7498/aps.62.013105
    [5] Zhu Jing, Lü Chang-Gui, Hong Xu-Sheng, Cui Yi-Ping. Theoretical study on solvent effect of the molecular first hyperpolarizability. Acta Physica Sinica, 2010, 59(4): 2850-2854. doi: 10.7498/aps.59.2850
    [6] Wang Lei, Hu Hui-Fang, Wei Jian-Wei, Zeng Hui, Yu Ying-Ying, Wang Zhi-Yong, Zhang Li-Juan. Theoretical study on the first hyperpolarizabilities of stilbene derivatives. Acta Physica Sinica, 2008, 57(5): 2987-2993. doi: 10.7498/aps.57.2987
    [7] Lu Zhen-Ping, Han Kui, Li Hai-Peng, Zhang Wen-Tao, Huang Zhi-Min, Shen Xiao-Peng, Zhang Zhao-Hui, Bai Lei. Theoretical study of molecular vibrational hyperpolarizability of 4-N-methylstilbazonium salt derivatives. Acta Physica Sinica, 2007, 56(10): 5843-5848. doi: 10.7498/aps.56.5843
    [8] Li Hai-Peng, Han Kui, Lu Zhen-Ping, Shen Xiao-Peng, Huang Zhi-Min, Zhang Wen-Tao, Bai Lei. Theoretical investigation on dispersion effect and two-photon resonance enhancement of molecular first hyperpolarizability. Acta Physica Sinica, 2006, 55(4): 1827-1831. doi: 10.7498/aps.55.1827
    [9] Tang Chang-Jian, Gong Yu-Bin, Yang Yu-Zhi. Dielectric tensor of 2D relativistic motional plasma. Acta Physica Sinica, 2004, 53(4): 1145-1149. doi: 10.7498/aps.53.1145
    [10] Zheng Yang-Dong, Li Jun-Qing, Li Chun-Fei. . Acta Physica Sinica, 2002, 51(6): 1279-1285. doi: 10.7498/aps.51.1279
    [11] LI HUI-LING, RUAN KE-QING, LI SHI-YAN, MO WEI-QIN, FAN RONG, LUO XI-GANG, CHEN XIAN-HUI, CAO LIE-ZHAO. STUDY ON THE RESISTIVITY AND HALL EFFECT OF MgB2 AND Mg0.93Li0.07B2. Acta Physica Sinica, 2001, 50(10): 2044-2048. doi: 10.7498/aps.50.2044
    [12] LIU JIA-LU, ZHANG TING-QING, FENG JIAN-HUA, ZHOU GUAN-SHAN, YING MING-JIONG. STUDY OF B+-IMPLANTED HgCdTe UNDER RAPID THERMAL ANNEALING. Acta Physica Sinica, 1998, 47(1): 47-52. doi: 10.7498/aps.47.47
    [13] WANG RUI-PING, HUANG DA-JIN, SHI QIN-WEI, XU PENG, CHEN QI, GU GEN-DA, CAI WEI-LI, ZHOU GUI-EN, RUAN YAO-ZHONG. ANISOTROPIC THERMOELECTRIC POWER OF Bi2Sr2CaCu2O8 SINGLE CRYSTAL. Acta Physica Sinica, 1992, 41(7): 1147-1150. doi: 10.7498/aps.41.1147
    [14] LU WU-XING, QIAN YA-HONG, TIAN REN-HE, WANG ZHONG-LIE. SUPPRESSION AND ELIMINATION OF SECONDARY DEFECTS IN SILICON IMPLANTED WITH MeV ENERGETIC B+ IONS. Acta Physica Sinica, 1990, 39(2): 254-260. doi: 10.7498/aps.39.254
    [15] HE XING-HONG, LI BAI-WEN, ZHANG CHENG-XIU. POLARIZABILITIES OF HIGH RYDBERG ALKALI ATOMS. Acta Physica Sinica, 1989, 38(10): 1717-1722. doi: 10.7498/aps.38.1717
    [16] CUI WAN-QIU, ZHANG JIAN, YUAN PING, WANG GUO-MEI, YUN HUAI-SHUN. A STUDY ON STRUCTURE OF AMORPHOUS FAST IONIC CONDUCTOR IN SYSTEM LiF-LiCl-B2O3. Acta Physica Sinica, 1986, 35(4): 497-504. doi: 10.7498/aps.35.497
    [17] YANG YUAN, YANG PEI-FANG, YU WEI-HAI. STUDY ON THE FREQUECY DEPENDENCE OF THE CONDUCTIVITY OF AMORPHOUS B2O3-0.7Li2O-0.7LiCl. Acta Physica Sinica, 1984, 33(7): 943-951. doi: 10.7498/aps.33.943
    [18] CHEN LI-QUAN, WANG LIAN-ZHONG, CHE GUANG-CAN, WANG GANG. IONIC CONDUCTION DURING PRE-CRYSTALLIZATION PROCESS IN AMORPHOUS IONIC CONDUCTOR Li2B2O4. Acta Physica Sinica, 1983, 32(9): 1177-1182. doi: 10.7498/aps.32.1177
    [19] WANG GANG, LI ZI-RONG, CHEN LI-QUAN, WANG LIAN-ZHONG. 7Li NMR INVESTIGATIONS IN AMORPHOUS IONIC CONDUC-TOR Li2B2O4. Acta Physica Sinica, 1983, 32(8): 1104-1108. doi: 10.7498/aps.32.1104
    [20] CHEN CHUANG-TIAN. AN IONIC GROUPING THEORY OF THE ELECTRO-OPTICAL AND NON-LINEAR OPTICAL EFFECTS OF CRYSTALS (IV)——THE CALCULATION OF LINEAR OPTICAL SUSCEPTIBILITIES IN CRYSTALS OF THE PEROVSKITE AND THE TUNGSTEN BRONZE STRUCTURE TYPES. Acta Physica Sinica, 1978, 27(1): 41-46. doi: 10.7498/aps.27.41
Metrics
  • Abstract views:  3795
  • PDF Downloads:  97
  • Cited By: 0
Publishing process
  • Received Date:  17 October 2022
  • Accepted Date:  27 April 2023
  • Available Online:  25 May 2023
  • Published Online:  20 July 2023

/

返回文章
返回