Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Precision spectroscopic measurements of few-electron atomic systems in extreme ultraviolet region

Xiao Zheng-Rong Zhang Heng-Zhi Hua Lin-Qiang Tang Li-Yan Liu Xiao-Jun

Citation:

Precision spectroscopic measurements of few-electron atomic systems in extreme ultraviolet region

Xiao Zheng-Rong, Zhang Heng-Zhi, Hua Lin-Qiang, Tang Li-Yan, Liu Xiao-Jun
cstr: 32037.14.aps.73.20241231
PDF
HTML
Get Citation
  • Precision spectroscopic measurements on the few-electron atomic systems have attracted much attention because they shed light on important topics such as the “proton radius puzzle” and testing quantum electrodynamics (QED). However, many important transitions of few-electron atomic systems are located in the vacuum/extreme ultraviolet region. Lack of a suitable narrow linewidth light source is one of the main reasons that hinder the further improvement of the spectral resolution.Recently, narrow linewidth extreme ultraviolet (XUV) light sources based on high harmonic processes in rare gases have opened up new opportunities for precision measurements of these transitions. The recently implemented XUV comb has a shortest wavelength of about 12 nm, a maximum power of milliwatts, and a linewidth of about 0.3 MHz, making it an ideal tool for precision measurements in the XUV band. At the same time, the Ramsey comb in the XUV band can achieve a spectral resolution of the kHz range, and may operate throughout the entire XUV band.With these useful tools, direct frequency spectroscopy and Ramsey comb spectroscopy in the XUV region are developed, and precision spectroscopic measurements of few-electron atomic systems with these methods are becoming a hot topic in cutting-edge science. In this paper, we provide an overview of the current status and the progress of relevant researches, both experimentally and theoretically, and discuss the opportunities for relevant important transitions in the extreme ultraviolet band.
      Corresponding author: Hua Lin-Qiang, hualq@wipm.ac.cn ; Liu Xiao-Jun, xjliu@wipm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12121004, U21A20435, 12393823, 92265206, 12174402, 12393821), the Pioneer Research Project for Basic and Interdisciplinary Frontiers of Chinese Academy of Sciences (Category B) (Grant No. 0920000), and the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-055).
    [1]

    Hänsch T W, Shaolow A L, Series G W 1979 Sc. Am. 240 94Google Scholar

    [2]

    Hänsch T W, Alnis J, Fendel P, Fischer M, Gohle C, Herrmann M, Holzwarth R, Kolachevsky N, Udem T, Zimmermann M 2005 Philos. Trans. R. Soc. London, Ser. A 363 2155Google Scholar

    [3]

    Gao H, Vanderhaeghen M 2022 Rev. Mod. Phys. 94 015002Google Scholar

    [4]

    Rooij R van, Borbely J S, Simonet J, Hoogerland M D, Eikema K S E, Rozendaal R A, Vassen W 2011 Science 333 196Google Scholar

    [5]

    Sun Y R, Hu S M 2020 Natl. Sci. Rev. 7 1818Google Scholar

    [6]

    Jentschura U D, Hass M 2004 Can. J. Phys. 82 103

    [7]

    Rengelink  R J, Werf Y, Notermans  R, Jannin R, Eikema K S E, Hoogerland  M D Vassen W 2018 Nat. Phys. 14 1132Google Scholar

    [8]

    Qi X Q, Zhang P P, Yan Z C, Drake G W, Zhong Z X, Shi T Y, Chen S L, Huang Y, Guan H, Gao K L 2020 Phys. Rev. Lett. 125 183002Google Scholar

    [9]

    Sun W, Zhang P P, Zhou P P, Chen S L, Zhou Z Q, Huang Y, Qi X Q, Yan Z C, Shi T Y, Drake G W, Zhong Z X 2023 Phys. Rev. Lett. 131 103002Google Scholar

    [10]

    Cozijn F, Diouf M, Ubachs W 2023 Phys. Rev. Lett. 131 073001Google Scholar

    [11]

    Schiller S 2022 Contemporary Phys. 63 247Google Scholar

    [12]

    Beyer A, Maisenbacher L, Matveev A, Pohl R, Khabarova K, Grinin A, Lamour T, Yost D C, Hänsch T W, Kolachevsky N, Udem T 2017 Science 358 79Google Scholar

    [13]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 119 263002Google Scholar

    [14]

    Indelicato P 2019 J. Phys. B 52 232001Google Scholar

    [15]

    Karshenboim S G 2005 Phys. Rep. 422 1Google Scholar

    [16]

    Hänsch T 2006 Rev. Mod. Phys. 78 1297Google Scholar

    [17]

    Parthey C, Matveev A, Alnis J, Bernhardt B, Beyer A, Holzwarth R, Maistrou A, Pohl R, Predehl K, Udem T, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P, and Hänsch T 2011 Phys. Rev. Lett. 107 203001Google Scholar

    [18]

    Grinin A, Matveev A, Yost D C, Maisenbacher L, Wirthl V, Pohl R, Hänsch T W, Udem T 2020 Science 370 1061Google Scholar

    [19]

    Bergeson S D, Balakrishnan A, Baldwin K G, Lucatorto T B, Marangos J P, McIlrath T J, O'Brian T R, Rolston S L, Sansonetti C J, Wen J, Westbrook N, Cheng C H, Eyler E E 1998 Phys. Rev. Lett. 80 3475Google Scholar

    [20]

    Semczuk M 2009 M. S. Thesis (Warsaw: University of Warsaw

    [21]

    Gohle C, Udem T, Herrmann M, Rauschenberger J, Holzwarth R, Schuessler H A, Krausz F, Hänsch T W 2005 Nature 436 234Google Scholar

    [22]

    Jones R J, Moll K D, Thorpe M J, Ye J 2005 Phys. Rev. Lett. 94 193201Google Scholar

    [23]

    Morgenweg J, Barmes I, Eikema K S 2014 Nat. Phys. 10 30Google Scholar

    [24]

    Pupeza I, Holzberger S, Eidam T, Carstens H, Esser D, Weitenberg J, Rußbüldt P, Rauschenberger J, Limpert J, Udem T, Tünnermann A, Hänsch T W, Apolonski A, Krausz F, Fill E 2013 Nat. Photonics 7 608Google Scholar

    [25]

    Porat G, Heyl C M, Schoun S B, Benko C, Dörre N, Corwin K L, Ye J 2018 Nat. Photonics 12 387Google Scholar

    [26]

    Zhang C, Ooi T, Higgins J S, Doyle J F, von der Wense L, Beeks K, Leitner A, Kazakov G, Li P, Thirolf P G, Schumm T, Ye J 2024 Nature 633 63Google Scholar

    [27]

    Dreissen L S, Roth C, Gründeman E L, Krauth J J, Favier M G, Eikema K S 2020 Phys. Rev. A 101 052509Google Scholar

    [28]

    Altmann R, Galtier S, Dreissen L, Eikema K 2016 Phys. Rev. Lett. 117 173201Google Scholar

    [29]

    Haas M, Jentschura U, Keitel C, Kolachevsky N, Herrmann M, Fendel P, Fischer M, Udem T, Holzwarth R, Hänsch T, Scully M, Agarwal G 2006 Phys. Rev. A 73 052501Google Scholar

    [30]

    Herrmann M, Haas M, Jentschura U D, Kottmann F, Leibfried D, Saathoff G, Gohle C, Ozawa A, Batteiger V, Knünz S, Kolachevsky N, Schüssler H, Hänsch T, Udem T 2009 Phys. Rev. A 79 052505Google Scholar

    [31]

    Moreno J, Schmid F, Weitenberg J, Karshenboim S G, Hänsch T W, Udem T, Ozawa A 2023 Eur. Phys. J. D 77 67Google Scholar

    [32]

    Krauth J J, Dreissen L S, Roth C, Gründeman E L, Collombon M, Favier M, Eikema K S 2019 arXiv: 1910.13192

    [33]

    Chen T, Du L J, Song H F, Liu P L, Huang Y, Tong X, Guan H, Gao K L 2015 Chin. Phys. Lett. 32 083701Google Scholar

    [34]

    Eyler1 E, Chieda1 D, Stowe M, Thorpe M, Schibli T, Ye J 2008 Eur. Phys. J. D 48 43Google Scholar

    [35]

    Kandula D Z, Gohle C, Pinkert T J, Ubachs W, Eikema K S 2010 Phys. Rev. Lett. 105 063001Google Scholar

    [36]

    Scheidegger S , Merkt F 2024 Phys. Rev. Lett. 132 113001Google Scholar

    [37]

    Zhang J, Hua L Q, Yu S G, Chen Z, Liu X J 2019 Chin. Phys. B 28 044206

    [38]

    Zhang J, Hua L Q, Chen Z, Zhu M, Gong C, Liu X J, 2020 Chin. Phys. Lett. 37 124203

    [39]

    Holzwarth R, Nevsky A Y, Zimmermann M, Udem T, Hänsch T W, Von Zanthier J, Walther H, Knight J C, Wadsworth W J, Russell P S, Skvortsov M N, Bagayev N 2001 Appl. Phys. B 73 269Google Scholar

    [40]

    Cingöz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hartl I, Ye J 2012 Nature 482 68Google Scholar

    [41]

    Ozawa A, Kobayashi Y 2013 Phys. Rev. A 87 022507Google Scholar

    [42]

    Zhu M F, Xiao Z R, Zhang H Z, Hua L Q, Liu Y N, Zuo Z, Xu S P, Liu X J 2024 Opt. Lett. 49 3757Google Scholar

    [43]

    Cavalieri S, Materazzi M, Eramo R 2002 Opt. Lasers Eng. 37 577Google Scholar

    [44]

    Witte S, Zinkstok R T, Ubachs W, Hogervorst W, Eikema K S 2005 Science 307 400Google Scholar

    [45]

    Ramsey N F 1949 Phys. Rev. 76 996Google Scholar

    [46]

    Pohl R, Antognini1A, Nez F, Amaro F, Biraben F, Cardoso J, Covita D, Dax A, Dhawan S, Fernandes L, Giesen A, Graf T, Hansch T, Indelicato P, Julien L, Kao C, Knowles P, Bigot E, Liu Y, Lopes J, Ludhova L, Monteiro C, Mulhauser F, Nebel T, Rabinowitz P, Santos J, Schaller L, Schuhmann K, Schwob C, Taqqul1 D, Veloso J, Kottmann F 2010 Nature 466 213Google Scholar

    [47]

    Brandt A D, Cooper S F, Rasor C, Burkley Z, Matveev A, Yost D 2022 Phys. Rev. Lett. 128 023001Google Scholar

    [48]

    Karshenboim S G., Ivanov V G 2002 Eur. Phys. J. D 19 13Google Scholar

    [49]

    Karshenboim S G., Ivanov V G 2002 Phys. Lett. B 524 259Google Scholar

    [50]

    Jentschura U D, Matveev A, Parthey C G, Alnis J, Pohl R, Udem Th, Kolachevsky N, Hänsch T W 2011 Phys. Rev. A 83 042505Google Scholar

    [51]

    Yerokhin V A, Pachucki K, Patkóš V 2019 Ann. Phys. 531 1800324Google Scholar

    [52]

    Drake G W F 2023 Springer Handbook of Atomic, Molecular, and Optical Physics (Springer Nature

    [53]

    Eides M I, Grotch H, Shelyuto V A 2007 Theory of Light Hydrogenic Bound States (Berlin, Heidelberg: Springer-Verlag

    [54]

    Bergeson S D, Balakrishnan A, Baldwin K G H, Lucatorto T B, Marangos J P, McIlrath T J, O'Brian T R, Rolston S L, Sansonetti C J, Wen J, Westbrook N, Cheng C H, Eyler E E 1999 Phys. Scr. T 83 76

    [55]

    Bergeson S D, Baldwin K, Lucatorto T B, McIlrath T J, Cheng C H, Eyler E E 2000 J. Opt. Soc. Am. B 17 1599Google Scholar

    [56]

    Lichten W, Shiner D, Zhou Z X 1992 Phys. Rev. A 43 1663(RGoogle Scholar

    [57]

    Kraemer S, Moens J, Athanasakis-Kaklamanakis M, Bara S, Beeks K, Chhetri P, Chrysalidis K, Claessens A, Cocolios T E, Correia J G, Witte H D, Ferrer R, Geldhof S, Heinke R, Hosseini N, Huyse M, Köster U, Kudryavtsev Y, Laatiaoui M, Lică R, Magchiels G, Manea V, Merckling C, Pereira L, Raeder S, Schumm T, Sels S, Thirolf P, Tunhuma S, Bergh P, Duppen P, Vantomme A, Verlinde M, Villarreal R, Wahl U 2023 Nature 617 706Google Scholar

    [58]

    Tiedau J, Okhapkin M V, Zhang K, Thielking J, Zitzer G, Peik E, Schaden F, Pronebner T, Morawetz I, De Col LT, Schneider F, Leitner A, Pressler M, Kazakov G, Beeks K, Sikorsky T, Schumm T 2024 Phys. Rev. Lett. 132 182501Google Scholar

    [59]

    Elwell R, Schneider C, Jeet J, Terhune J, Morgan H, Alexandrova A, Tran T, Derevianko A, Hudson E 2024 Phys. Rev. Lett. 133 013201Google Scholar

    [60]

    Peik E, Schumm T, Safronova M S, Palffy A, Weitenberg J, Thirolf P G 2021 Quantum Sci. Technol. 6 034002Google Scholar

    [61]

    Wense L, Seiferle B 2020 Eur. Phys. J. A 56 277Google Scholar

    [62]

    Kozlov M G, Safronova M S, Crespo López-Urrutia J R, Schmidt P O 2018 Rev. Mod. Phys. 90 045005Google Scholar

    [63]

    Epp S W, López-Urrutia J C, Brenner G, Mäckel V, Mokler P H, Treusch R, Kuhlmann M, Yurkov M V, Feldhaus J, Schneider J R, Wellhöfer M, Martins M, Wurth W, Ullrich J 2007 Phys. Rev. Lett. 98 183001Google Scholar

    [64]

    Beiersdorfer P, Träbert E, Brown G V, Clementson J, Thorn D B, Chen M H, Cheng K T, Sapirstein J 2014 Phys. Rev. Lett. 112 233003Google Scholar

    [65]

    Kromer K, Lyu C, Door M, Filianin P, Harman Z, Herkenhoff J, Indelicato P, Keitel C H, Lange D, Novikov Y N, Schweiger C, Eliseev S, Blaum K 2023 Phys. Rev. Lett. 131 223002Google Scholar

    [66]

    Chen S L, Zhou Z Q, Li J G, Zhang T X, Li C B, Shi T Y, Huang Y, Gao K L, Guan H 2024 Phys. Rev. Res. 6 013030Google Scholar

    [67]

    Ghimire1 S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F, Reis D A 2011 Nat. Phys. 7 138Google Scholar

    [68]

    Xu B, Chen Z, Hänsch T W, Picqué N 2024 Nature 627 289Google Scholar

    [69]

    Jayich A M, Long X, Campbell W C 2016 Phys. Rev. X 6 041004Google Scholar

  • 图 1  直接频率梳光谱方法原理示意图 (a)重复频率和相位精确锁定的飞秒脉冲; (b)频率域对应的梳齿; (c)原子能级

    Figure 1.  A schematically view of the principle of the direct frequency comb spectroscopy: (a) Femtosecond pulse trains after carrier-envelop phase stabilization; (b) comb teeth in the frequency domain; (c) atomic energy level.

    图 2  大范围扫描光梳重复频率得到原子上能态布居数演化的示意图

    Figure 2.  A schematically view of the population oscillation when scanning the fr of the frequency comb for a large range.

    图 3  拉姆齐频率梳光谱方法原理示意图[23] (a)单一原子能级情况下扫描脉冲延时布居数的演化规律; (b)多原子能级情况下扫描脉冲延时布居数的演化规律

    Figure 3.  A schematically view of the principle of the Ramsey comb spectroscopy[23]: (a) The population of the upper state oscillate with a single frequency if only one transition is excited; (b) the population of the upper state oscillate with multiple frequencies if multiple transitions are excited.

    图 4  利用极紫外光梳测量冷却氦离子1s→2s跃迁的方案示意图[31]

    Figure 4.  A schematic view of measuring the 1s→2s transition in cold He+ with extreme ultraviolet comb [31].

    图 5  利用极紫外波段的拉姆齐光梳测量冷却氦离子1s→2s跃迁的方案示意图[32]

    Figure 5.  A schematically view of measuring the 1s→2s transition in cold He+ with Ramsey comb spectroscopy in the extreme ultraviolet region [32].

    图 6  基于(2+1) REMPI方案激发氦原子1s→2s跃迁并测量氦离子随激光频率变化的离子产率[19]

    Figure 6.  Measurement of the 1s→2s transition of He using the (2+1) REMPI scheme and measurement of the yield of He+ while tuning the excitation frequency[19].

    图 7  H原子1s→2s跃迁频率的各种修正计算[52]

    Figure 7.  Corrections of different effects to the 1s→2s transition of H atom [52].

    图 8  氢原子1s→2s跃迁频率的比较, 蓝色代表的是实验测量结果, 洋红色代表的是理论计算值

    Figure 8.  Comparison of the experimental (blue) and calculated (magenta) results of the 1s→2s transition of H atom.

    图 9  氦-4原子1s→2s跃迁频率的比较, 蓝色代表的是实验测量值, 洋红色代表的是唯一的理论计算结果

    Figure 9.  Comparison of the experimental (blue) and calculated (magenta) results of the 1s→2s transition of He atom.

    图 10  利用真空紫外光梳直接测量钍的核能级跃迁[26]

    Figure 10.  Direct spectroscopic measurement of Th nuclear electric quadrupole structure [26].

  • [1]

    Hänsch T W, Shaolow A L, Series G W 1979 Sc. Am. 240 94Google Scholar

    [2]

    Hänsch T W, Alnis J, Fendel P, Fischer M, Gohle C, Herrmann M, Holzwarth R, Kolachevsky N, Udem T, Zimmermann M 2005 Philos. Trans. R. Soc. London, Ser. A 363 2155Google Scholar

    [3]

    Gao H, Vanderhaeghen M 2022 Rev. Mod. Phys. 94 015002Google Scholar

    [4]

    Rooij R van, Borbely J S, Simonet J, Hoogerland M D, Eikema K S E, Rozendaal R A, Vassen W 2011 Science 333 196Google Scholar

    [5]

    Sun Y R, Hu S M 2020 Natl. Sci. Rev. 7 1818Google Scholar

    [6]

    Jentschura U D, Hass M 2004 Can. J. Phys. 82 103

    [7]

    Rengelink  R J, Werf Y, Notermans  R, Jannin R, Eikema K S E, Hoogerland  M D Vassen W 2018 Nat. Phys. 14 1132Google Scholar

    [8]

    Qi X Q, Zhang P P, Yan Z C, Drake G W, Zhong Z X, Shi T Y, Chen S L, Huang Y, Guan H, Gao K L 2020 Phys. Rev. Lett. 125 183002Google Scholar

    [9]

    Sun W, Zhang P P, Zhou P P, Chen S L, Zhou Z Q, Huang Y, Qi X Q, Yan Z C, Shi T Y, Drake G W, Zhong Z X 2023 Phys. Rev. Lett. 131 103002Google Scholar

    [10]

    Cozijn F, Diouf M, Ubachs W 2023 Phys. Rev. Lett. 131 073001Google Scholar

    [11]

    Schiller S 2022 Contemporary Phys. 63 247Google Scholar

    [12]

    Beyer A, Maisenbacher L, Matveev A, Pohl R, Khabarova K, Grinin A, Lamour T, Yost D C, Hänsch T W, Kolachevsky N, Udem T 2017 Science 358 79Google Scholar

    [13]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 119 263002Google Scholar

    [14]

    Indelicato P 2019 J. Phys. B 52 232001Google Scholar

    [15]

    Karshenboim S G 2005 Phys. Rep. 422 1Google Scholar

    [16]

    Hänsch T 2006 Rev. Mod. Phys. 78 1297Google Scholar

    [17]

    Parthey C, Matveev A, Alnis J, Bernhardt B, Beyer A, Holzwarth R, Maistrou A, Pohl R, Predehl K, Udem T, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P, and Hänsch T 2011 Phys. Rev. Lett. 107 203001Google Scholar

    [18]

    Grinin A, Matveev A, Yost D C, Maisenbacher L, Wirthl V, Pohl R, Hänsch T W, Udem T 2020 Science 370 1061Google Scholar

    [19]

    Bergeson S D, Balakrishnan A, Baldwin K G, Lucatorto T B, Marangos J P, McIlrath T J, O'Brian T R, Rolston S L, Sansonetti C J, Wen J, Westbrook N, Cheng C H, Eyler E E 1998 Phys. Rev. Lett. 80 3475Google Scholar

    [20]

    Semczuk M 2009 M. S. Thesis (Warsaw: University of Warsaw

    [21]

    Gohle C, Udem T, Herrmann M, Rauschenberger J, Holzwarth R, Schuessler H A, Krausz F, Hänsch T W 2005 Nature 436 234Google Scholar

    [22]

    Jones R J, Moll K D, Thorpe M J, Ye J 2005 Phys. Rev. Lett. 94 193201Google Scholar

    [23]

    Morgenweg J, Barmes I, Eikema K S 2014 Nat. Phys. 10 30Google Scholar

    [24]

    Pupeza I, Holzberger S, Eidam T, Carstens H, Esser D, Weitenberg J, Rußbüldt P, Rauschenberger J, Limpert J, Udem T, Tünnermann A, Hänsch T W, Apolonski A, Krausz F, Fill E 2013 Nat. Photonics 7 608Google Scholar

    [25]

    Porat G, Heyl C M, Schoun S B, Benko C, Dörre N, Corwin K L, Ye J 2018 Nat. Photonics 12 387Google Scholar

    [26]

    Zhang C, Ooi T, Higgins J S, Doyle J F, von der Wense L, Beeks K, Leitner A, Kazakov G, Li P, Thirolf P G, Schumm T, Ye J 2024 Nature 633 63Google Scholar

    [27]

    Dreissen L S, Roth C, Gründeman E L, Krauth J J, Favier M G, Eikema K S 2020 Phys. Rev. A 101 052509Google Scholar

    [28]

    Altmann R, Galtier S, Dreissen L, Eikema K 2016 Phys. Rev. Lett. 117 173201Google Scholar

    [29]

    Haas M, Jentschura U, Keitel C, Kolachevsky N, Herrmann M, Fendel P, Fischer M, Udem T, Holzwarth R, Hänsch T, Scully M, Agarwal G 2006 Phys. Rev. A 73 052501Google Scholar

    [30]

    Herrmann M, Haas M, Jentschura U D, Kottmann F, Leibfried D, Saathoff G, Gohle C, Ozawa A, Batteiger V, Knünz S, Kolachevsky N, Schüssler H, Hänsch T, Udem T 2009 Phys. Rev. A 79 052505Google Scholar

    [31]

    Moreno J, Schmid F, Weitenberg J, Karshenboim S G, Hänsch T W, Udem T, Ozawa A 2023 Eur. Phys. J. D 77 67Google Scholar

    [32]

    Krauth J J, Dreissen L S, Roth C, Gründeman E L, Collombon M, Favier M, Eikema K S 2019 arXiv: 1910.13192

    [33]

    Chen T, Du L J, Song H F, Liu P L, Huang Y, Tong X, Guan H, Gao K L 2015 Chin. Phys. Lett. 32 083701Google Scholar

    [34]

    Eyler1 E, Chieda1 D, Stowe M, Thorpe M, Schibli T, Ye J 2008 Eur. Phys. J. D 48 43Google Scholar

    [35]

    Kandula D Z, Gohle C, Pinkert T J, Ubachs W, Eikema K S 2010 Phys. Rev. Lett. 105 063001Google Scholar

    [36]

    Scheidegger S , Merkt F 2024 Phys. Rev. Lett. 132 113001Google Scholar

    [37]

    Zhang J, Hua L Q, Yu S G, Chen Z, Liu X J 2019 Chin. Phys. B 28 044206

    [38]

    Zhang J, Hua L Q, Chen Z, Zhu M, Gong C, Liu X J, 2020 Chin. Phys. Lett. 37 124203

    [39]

    Holzwarth R, Nevsky A Y, Zimmermann M, Udem T, Hänsch T W, Von Zanthier J, Walther H, Knight J C, Wadsworth W J, Russell P S, Skvortsov M N, Bagayev N 2001 Appl. Phys. B 73 269Google Scholar

    [40]

    Cingöz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hartl I, Ye J 2012 Nature 482 68Google Scholar

    [41]

    Ozawa A, Kobayashi Y 2013 Phys. Rev. A 87 022507Google Scholar

    [42]

    Zhu M F, Xiao Z R, Zhang H Z, Hua L Q, Liu Y N, Zuo Z, Xu S P, Liu X J 2024 Opt. Lett. 49 3757Google Scholar

    [43]

    Cavalieri S, Materazzi M, Eramo R 2002 Opt. Lasers Eng. 37 577Google Scholar

    [44]

    Witte S, Zinkstok R T, Ubachs W, Hogervorst W, Eikema K S 2005 Science 307 400Google Scholar

    [45]

    Ramsey N F 1949 Phys. Rev. 76 996Google Scholar

    [46]

    Pohl R, Antognini1A, Nez F, Amaro F, Biraben F, Cardoso J, Covita D, Dax A, Dhawan S, Fernandes L, Giesen A, Graf T, Hansch T, Indelicato P, Julien L, Kao C, Knowles P, Bigot E, Liu Y, Lopes J, Ludhova L, Monteiro C, Mulhauser F, Nebel T, Rabinowitz P, Santos J, Schaller L, Schuhmann K, Schwob C, Taqqul1 D, Veloso J, Kottmann F 2010 Nature 466 213Google Scholar

    [47]

    Brandt A D, Cooper S F, Rasor C, Burkley Z, Matveev A, Yost D 2022 Phys. Rev. Lett. 128 023001Google Scholar

    [48]

    Karshenboim S G., Ivanov V G 2002 Eur. Phys. J. D 19 13Google Scholar

    [49]

    Karshenboim S G., Ivanov V G 2002 Phys. Lett. B 524 259Google Scholar

    [50]

    Jentschura U D, Matveev A, Parthey C G, Alnis J, Pohl R, Udem Th, Kolachevsky N, Hänsch T W 2011 Phys. Rev. A 83 042505Google Scholar

    [51]

    Yerokhin V A, Pachucki K, Patkóš V 2019 Ann. Phys. 531 1800324Google Scholar

    [52]

    Drake G W F 2023 Springer Handbook of Atomic, Molecular, and Optical Physics (Springer Nature

    [53]

    Eides M I, Grotch H, Shelyuto V A 2007 Theory of Light Hydrogenic Bound States (Berlin, Heidelberg: Springer-Verlag

    [54]

    Bergeson S D, Balakrishnan A, Baldwin K G H, Lucatorto T B, Marangos J P, McIlrath T J, O'Brian T R, Rolston S L, Sansonetti C J, Wen J, Westbrook N, Cheng C H, Eyler E E 1999 Phys. Scr. T 83 76

    [55]

    Bergeson S D, Baldwin K, Lucatorto T B, McIlrath T J, Cheng C H, Eyler E E 2000 J. Opt. Soc. Am. B 17 1599Google Scholar

    [56]

    Lichten W, Shiner D, Zhou Z X 1992 Phys. Rev. A 43 1663(RGoogle Scholar

    [57]

    Kraemer S, Moens J, Athanasakis-Kaklamanakis M, Bara S, Beeks K, Chhetri P, Chrysalidis K, Claessens A, Cocolios T E, Correia J G, Witte H D, Ferrer R, Geldhof S, Heinke R, Hosseini N, Huyse M, Köster U, Kudryavtsev Y, Laatiaoui M, Lică R, Magchiels G, Manea V, Merckling C, Pereira L, Raeder S, Schumm T, Sels S, Thirolf P, Tunhuma S, Bergh P, Duppen P, Vantomme A, Verlinde M, Villarreal R, Wahl U 2023 Nature 617 706Google Scholar

    [58]

    Tiedau J, Okhapkin M V, Zhang K, Thielking J, Zitzer G, Peik E, Schaden F, Pronebner T, Morawetz I, De Col LT, Schneider F, Leitner A, Pressler M, Kazakov G, Beeks K, Sikorsky T, Schumm T 2024 Phys. Rev. Lett. 132 182501Google Scholar

    [59]

    Elwell R, Schneider C, Jeet J, Terhune J, Morgan H, Alexandrova A, Tran T, Derevianko A, Hudson E 2024 Phys. Rev. Lett. 133 013201Google Scholar

    [60]

    Peik E, Schumm T, Safronova M S, Palffy A, Weitenberg J, Thirolf P G 2021 Quantum Sci. Technol. 6 034002Google Scholar

    [61]

    Wense L, Seiferle B 2020 Eur. Phys. J. A 56 277Google Scholar

    [62]

    Kozlov M G, Safronova M S, Crespo López-Urrutia J R, Schmidt P O 2018 Rev. Mod. Phys. 90 045005Google Scholar

    [63]

    Epp S W, López-Urrutia J C, Brenner G, Mäckel V, Mokler P H, Treusch R, Kuhlmann M, Yurkov M V, Feldhaus J, Schneider J R, Wellhöfer M, Martins M, Wurth W, Ullrich J 2007 Phys. Rev. Lett. 98 183001Google Scholar

    [64]

    Beiersdorfer P, Träbert E, Brown G V, Clementson J, Thorn D B, Chen M H, Cheng K T, Sapirstein J 2014 Phys. Rev. Lett. 112 233003Google Scholar

    [65]

    Kromer K, Lyu C, Door M, Filianin P, Harman Z, Herkenhoff J, Indelicato P, Keitel C H, Lange D, Novikov Y N, Schweiger C, Eliseev S, Blaum K 2023 Phys. Rev. Lett. 131 223002Google Scholar

    [66]

    Chen S L, Zhou Z Q, Li J G, Zhang T X, Li C B, Shi T Y, Huang Y, Gao K L, Guan H 2024 Phys. Rev. Res. 6 013030Google Scholar

    [67]

    Ghimire1 S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F, Reis D A 2011 Nat. Phys. 7 138Google Scholar

    [68]

    Xu B, Chen Z, Hänsch T W, Picqué N 2024 Nature 627 289Google Scholar

    [69]

    Jayich A M, Long X, Campbell W C 2016 Phys. Rev. X 6 041004Google Scholar

  • [1] Preface to the special topic: Precision spectroscopy of few-electron atoms and molecules. Acta Physica Sinica, 2024, 73(20): 200101. doi: 10.7498/aps.73.200101
    [2] Liu Xin, Wen Wei-Qiang, Li Ji-Guang, Wei Bao-Ren, Xiao Jun. Experimental and theoretical research progress of 2P1/2 2P3/2 transitions of highly charged boron-like ions. Acta Physica Sinica, 2024, 73(20): 203102. doi: 10.7498/aps.73.20241190
    [3] Guan Hua, Qi Xiao-Qiu, Chen Shao-Long, Shi Ting-Yun, Gao Ke-Lin. Precision spectroscopy and nuclear structure information of Li+ ions. Acta Physica Sinica, 2024, 73(20): 204203. doi: 10.7498/aps.73.20241128
    [4] Rao Bing-Jie, Zhang Pan, Li Ming-Kun, Yang Xi-Guang, Yan Lu-Lu, Chen Xin, Zhang Shou-Gang, Zhang Yan-Yan, Jiang Hai-Feng. Multi-branch erbium fiber-based femtosecond optical frequency comb for measurement of cavity ring-down spectroscopy. Acta Physica Sinica, 2022, 71(8): 084203. doi: 10.7498/aps.71.20212162
    [5] Lei Jian-Ting, Yu Xuan, Shi Guo-Qiang, Yan Shun-Cheng, Sun Shao-Hua, Wang Quan-Jun, Ding Bao-Wei, Ma Xin-Wen, Zhang Shao-Feng, Ding Jing-Jie. Photoionization of Ne and Xe atoms induced by extreme ultraviolet photons. Acta Physica Sinica, 2022, 71(14): 143201. doi: 10.7498/aps.71.20220341
    [6] Zhu Xing-Long, Wang Wei-Min, Yu Tong-Pu, He Feng, Chen Min, Weng Su-Ming, Chen Li-Ming, Li Yu-Tong, Sheng Zheng-Ming, Zhang Jie. Research progress of ultrabright γ-ray radiation and electron-positron pair production driven by extremely intense laser fields. Acta Physica Sinica, 2021, 70(8): 085202. doi: 10.7498/aps.70.20202224
    [7] Sun Ting, Wang Yu, Guo Ren-Tong, Lu Zhi-Wei, Li Jian-Xing. Review on laser-driven high-energy polarized electron and positron beams and γ-rays. Acta Physica Sinica, 2021, 70(8): 087901. doi: 10.7498/aps.70.20210009
    [8] Chen Jiao-Jiao, Sun Yu, Wen Jin-Lu, Hu Shui-Ming. A bright and stable beam of slow metastable helium atoms. Acta Physica Sinica, 2021, 70(13): 133201. doi: 10.7498/aps.70.20201833
    [9] Hai Bang, Zhang Shao-Feng, Zhang Min, Dong Da-Pu, Lei Jian-Ting, Zhao Dong-Mei, Ma Xin-Wen. A tabletop experimental system for investigating ultrafast atomic dynamics based on femtosecond extreme ultraviolet photons. Acta Physica Sinica, 2020, 69(23): 234208. doi: 10.7498/aps.69.20201035
    [10] Weng Yu-Xiang, Wang Zhuan, Chen Hai-Long, Leng Xuan, Zhu Rui-Dan. Quantum coherence measurement with femtosecond time-resolve two-dimensional electronic spectroscopy: principles, applications and outlook. Acta Physica Sinica, 2018, 67(12): 127801. doi: 10.7498/aps.67.20180783
    [11] Kang Peng, Sun Yu, Wang Jin, Liu An-Wen, Hu Shui-Ming. Measurement of molecular absorption spectrum with a laser locked on a high-finesse cavity. Acta Physica Sinica, 2018, 67(10): 104206. doi: 10.7498/aps.67.20172532
    [12] Zhang Wei-Peng, Yang Hong-Lei, Chen Xin-Yi, Wei Hao-Yun, Li Yan. Optical frequency linked dual-comb absorption spectrum measurement. Acta Physica Sinica, 2018, 67(9): 090701. doi: 10.7498/aps.67.20180150
    [13] Zheng Xin, Sun Yu, Chen Jiao-Jiao, Hu Shui-Ming. Precision spectroscopy on the 2 3S-2 3P transition of atomic helium. Acta Physica Sinica, 2018, 67(16): 164203. doi: 10.7498/aps.67.20180914
    [14] Tang Rong, Wang Guo-Li, Li Xiao-Yong, Zhou Xiao-Xin. Compression of extreme ultraviolet pulse for atom with resonant structure exposed to an infrared laser field. Acta Physica Sinica, 2016, 65(10): 103202. doi: 10.7498/aps.65.103202
    [15] Sun Heng-Xin, Liu Kui, Zhang Jun-Xiang, Gao Jiang-Rui. Quantum precision measurement based on squeezed light. Acta Physica Sinica, 2015, 64(23): 234210. doi: 10.7498/aps.64.234210
    [16] Yang Zeng-Qiang, Zhang Li-Da. Quantum control of the XUV photoabsorption spectrum of helium atoms via the carrier-envelope-phase of an infrared laser pulse. Acta Physica Sinica, 2015, 64(13): 133203. doi: 10.7498/aps.64.133203
    [17] Lu Dao-Ming. Tripartite entanglement properties of coupled three atoms in cavity quantum electrodynamics. Acta Physica Sinica, 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [18] Li Wen-Fang, Du Jin-Jin, Wen Rui-Juan, Yang Peng-Fei, Li Gang, Zhang Tian-Cai. Single-atom transfer in a strongly coupled cavity quantum electrodynamics: experiment and Monte Carlo simulation. Acta Physica Sinica, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [19] Jiang Wei-Zhou, Fu De-Ji, Wang Zhen-Xia, Ai Xiao-Bai, Zhu Zhi-Yuan. Effects of quantum electromagnetic dynamics in a cylindrical ring cavity. Acta Physica Sinica, 2003, 52(4): 813-822. doi: 10.7498/aps.52.813
    [20] YUAN XIAO-LI, SHI YI, YANG HONG-GUAN, BU HUI-MING, WU JUN, ZHAO BO, ZHANG RONG, ZHENG YOU-DOU. CHARGING DYNAMICS OF Si-QUANTUM DOTS IN TUNNEL CAPACITOR. Acta Physica Sinica, 2000, 49(10): 2037-2040. doi: 10.7498/aps.49.2037
Metrics
  • Abstract views:  594
  • PDF Downloads:  40
  • Cited By: 0
Publishing process
  • Received Date:  03 September 2024
  • Accepted Date:  11 October 2024
  • Available Online:  18 October 2024
  • Published Online:  20 October 2024

/

返回文章
返回