Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A bright and stable beam of slow metastable helium atoms

Chen Jiao-Jiao Sun Yu Wen Jin-Lu Hu Shui-Ming

Citation:

A bright and stable beam of slow metastable helium atoms

Chen Jiao-Jiao, Sun Yu, Wen Jin-Lu, Hu Shui-Ming
PDF
HTML
Get Citation
  • A stable high-intensity atomic beam source plays a key role in many precision measurements. The precision spectroscopy of slow metastable ($2^3{\rm S}$) helium atoms is of great interest in testing quantum electrodynamics and determining the fine structure constant. By improving the source cavity structure and using laser cooling method, the beam flux is greatly enhanced. The added Zeeman slower reduces the longitudinal velocity of atoms, and at the same time increases the beam brightness of atoms at one single speed. Near the back end of Zeeman slower, a two-dimensional magneto-optical trap is added to collimate and focus the atomic beam. In addition, A beam stabilizing system is developed by using feedback control method. By changing the frequency of transverse cooling laser to change the cooling efficiency, the fluctuation of atomic beam intensity can be compensated in real time, and then the beam intensity can be stabilized at the target number. Experiments show that the continuous beam of metastable helium atoms at a velocity of $(100\pm 3.6)$ m/s has an intensity of $5.8\times10^{12}$ atoms/s/sr and a relative stability of 0.021%. In the experiment of precise spectral measurement based on atomic beam, the narrow longitudinal velocity distribution reduces the lateral Doppler broadening effect, and the lower longitudinal velocity also reasonably reduces the systematic error caused by the first-order Doppler effect. The atomic beam with such high intensity and stability in a single momentum and quantum state obviously improves the signal-to-noise ratio of the spectrum, and further reduces the statistical error of the results in the same detection time. Using this atomic beam, we demonstrated spectroscopy of the $2^3{\rm S}-2^3{\rm P}$ transition of $^4{\rm{He}}$ under the condition of only 0.1% of the saturated intensity. At this time, the full width at half maximum of the spectral peak is almost close to the natural line width, but the spectral signal-to-noise ratio is still better than 400 and the frequency shift caused by the detection laser power can be less than 1 kHz. This kind of spectral detection at low power can effectively reduce the power-dependent frequency shift, thus obtaining more reliable detection results. This metastable helium atom beam experimental system can also be used as a reference for similar precision measurement experiments.
      Corresponding author: Sun Yu, robert@mail.ustc.edu.cn
    • Funds: Project supported by the Strategic Leading Science and Technology Project (B) of Chinese Academy of Sciences (Grant Nos. XDB21010400, XDB21020100), the National Natural Science Foundation of China (Grant Nos. 91736101, 21688102, 11304303, 91436209, 21427804), and the Initiative in Quantum Information Technologies of Anhui Province, China (Grant No. AHY110000)
    [1]

    Pachucki K, Yerokhin, V A 2015 J. Phys. Chem. Ref. Data 44 031206Google Scholar

    [2]

    Salumbides E J, Koelemeij J C J, Komasa J, Pachucki K, Eikema K S E, Ubachs W 2013 Phys. Rev. D 87 112008Google Scholar

    [3]

    Ficek F, Kimball D F J, Kozlov M G, Leefer N, Pustelny S, Budker D 2017 Phys. Rev. A 95 032505Google Scholar

    [4]

    Pachucki K, Yerokhin V A 2010 Phys. Rev. Lett. 104 070403Google Scholar

    [5]

    Drake G W F 2002 Can. J. Phys. 80 1195

    [6]

    Pachucki K 2006 Phys. Rev. Lett. 97 013002Google Scholar

    [7]

    Ottermann C R, Köbschall G, Maurer K, Röhrich K, Schmitt Ch, Walther V H 1985 Nucl. Phys. A 436 688Google Scholar

    [8]

    Sick I 2015 J. Phys. Chem. Ref. Data 44 031213Google Scholar

    [9]

    Yerokhin V A, Pachucki K 2016 Phys. Rev. A 94 052508Google Scholar

    [10]

    Pahcucki K, Patkos V, Yerokhin V A 2017 Phys. Rev. A 95 062510Google Scholar

    [11]

    Feng G P, Zheng X, Sun Y R, Hu S M 2015 Phys. Rev. A 91 030502Google Scholar

    [12]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 119 263002Google Scholar

    [13]

    Storry C H, Hessels E A 1998 Phys. Rev. A 58 R8Google Scholar

    [14]

    George M C, Lombardi L D, Hessels E A 2001 Phys. Rev. Lett. 87 173002Google Scholar

    [15]

    Minardi F, Bianchini G, Pastor P C, Giusfredi G, Pavone F S, Inguscio M 1999 Phys. Rev. Lett. 82 1112Google Scholar

    [16]

    Castillega J, Livingston D, Sanders A, Shiner D 2000 Phys. Rev. Lett. 84 4321Google Scholar

    [17]

    Pastor P C, Giusfredi G, Natale P D, Hagel G, Mauro C D, Inguscio M 2004 Phys. Rev. Lett. 92 023001Google Scholar

    [18]

    Zelevinsky T, Farkas D, Gabrilse G 2005 Phys. Rev. Lett. 95 203001Google Scholar

    [19]

    van Rooij R, Borbely J S, Simonet J, Hoogerland M D, Eikema K S E, Rozendaal R A, Vassen W 2011 Science 333 196Google Scholar

    [20]

    Rengelink R J, van der Werf Y, Notermans R P M J W, Jannin R, Eikema K S E, Hoogerland M D, Vassen W 2018 Nat. Phys. 14 1132Google Scholar

    [21]

    Zheng X, Sun Y R, Chen J J, Wen J L, Hu S M 2019 Phys. Rev. A 99 032506Google Scholar

    [22]

    冯高平, 孙羽, 郑昕, 胡水明 2014 物理学报 63 123201Google Scholar

    Feng G P, Sun Y, Zheng X, Hu S M 2014 Acta Phys. Sin. 63 123201Google Scholar

    [23]

    孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明 2012 物理学报 61 170601Google Scholar

    Sun Y, Feng G P, Cheng C F, Tu L Y, Pan H, Yang G M, Hu S M 2012 Acta Phys. Sin. 61 170601Google Scholar

    [24]

    Labeyrie G, Browaeys A, Rooijakkers W, Voelker D, Grosperrin J, Wanner B, Westbrook C I, Aspect A 1999 Eur. Phys. J. D 7 341

    [25]

    Hoogerland M D, Driessen J P J, Vredenbregt E J D, Megens H J L, Schuwer M P, Beijerinck H C W, Van Leeuwen K A K 1996 Appl. Phys. B 62 323

    [26]

    Fahey D W, Parks W F, Schearer L D 1980 J. Phys. E: Sci. Instrum. 13 381Google Scholar

    [27]

    Rothe E W, Neynaber R H, Trujillo S M 1965 J. Chem. Phys. 42 3310Google Scholar

    [28]

    Cheng C F, Jiang W, Yang G M, Sun Y R, Pan H, Gao Y, Liu A W, Hu S M 2010 Rev. Sci. Instrum. 81 123106Google Scholar

    [29]

    Rooijakkers W, Hogervorst W, Vassen W 1997 Opt. Commun. 135 149Google Scholar

    [30]

    Rooijakkers W, Hogervorst W, Vassen W 1996 Opt. Commun. 135 321

    [31]

    Swansson J A, Baldwin K G H, Hoogerland M D, Truscott A G, Buckman S J 2004 Appl. Phys. B 79 485Google Scholar

    [32]

    Hodgman S S, Dall R G, Byron L J, Baldwin K G H, Buckman S J, Truscott A G 2009 Phys. Rev. Lett. 103 053002Google Scholar

    [33]

    Yan Z C, Drake G W F 1994 Phys. Rev. A 50 R1980Google Scholar

    [34]

    Minardi F, Artoni M, Cancio P, Inguscio M, Giusfredi G, Carusotto I 1999 Phys. Rev. A 60 4164Google Scholar

    [35]

    Artoni M, Carusotto I, Minardi F 2000 Phys. Rev. A 62 023402Google Scholar

    [36]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 118 063001Google Scholar

    [37]

    Smiciklas M, Shiner D 2010 Phys. Rev. Lett. 105 123001Google Scholar

  • 图 1  氦原子$2^3 {\rm S}—2^3 {\rm P}$跃迁频率测量实验装置示意图. 插图为$2^3 {\rm S}—2^3 {\rm P}$跃迁能级图. ECDL, 外腔式半导体激光器; EOM, 电光调制器; GPS, 全球定位系统; OFC, 光学频率梳; AOM, 声光调制器; BS, 分束棱镜; ULE, 超低膨胀系数标准具; FM, 幅度调制

    Figure 1.  Schematic diagram of the experimental setup for measuring the $2^3 {\rm S}-2^3 {\rm P}$ transition frequency of helium. Inset: Energy diagram of the $2 ^3 {\rm S}-2 ^3 {\rm P}$ transitions. ECDL, external cavity diode laser; EOM, electro-optical modulator; GPS, global positioning system; OFC, optical frequency comb; AOM, acoustic-optical modulator; BS, beam splitter; PZT, piezoelectric transducer; ULE, ultralow expansion; FM, amplitude modulation.

    图 2  氦原子束流强度相对稳定度

    Figure 2.  Diagram of the intensity stability of the helium beam.

    图 3  速度为$(100\pm3.6)$ m/s的氦原子束流强度

    Figure 3.  Beam intensity evolution of helium atoms at $(100\pm3.6)$ m/s.

    图 4  $2^3 {\rm S}_1—2^3 {\rm P}_0$跃迁测量实验过程 (a) 光学抽运; (b) 光谱探测

    Figure 4.  Experimental procedure of the measurement of the $2^3 {\rm S}_1-2^3 {\rm P}_0$ transition: (a) Optical pumping; (b) spectroscopy probing.

    图 5  $2^3 {\rm S}_1—2^3 {\rm P}_0$跃迁单次扫描所获得光谱

    Figure 5.  A single scan spectrum of $2^3 {\rm S}_1 - 2^3 {\rm P}_0$ transition.

    图 6  不同探测激光功率下获得的氦原子跃迁频率

    Figure 6.  Transition frequencies of helium obtained at different probing laser powers.

  • [1]

    Pachucki K, Yerokhin, V A 2015 J. Phys. Chem. Ref. Data 44 031206Google Scholar

    [2]

    Salumbides E J, Koelemeij J C J, Komasa J, Pachucki K, Eikema K S E, Ubachs W 2013 Phys. Rev. D 87 112008Google Scholar

    [3]

    Ficek F, Kimball D F J, Kozlov M G, Leefer N, Pustelny S, Budker D 2017 Phys. Rev. A 95 032505Google Scholar

    [4]

    Pachucki K, Yerokhin V A 2010 Phys. Rev. Lett. 104 070403Google Scholar

    [5]

    Drake G W F 2002 Can. J. Phys. 80 1195

    [6]

    Pachucki K 2006 Phys. Rev. Lett. 97 013002Google Scholar

    [7]

    Ottermann C R, Köbschall G, Maurer K, Röhrich K, Schmitt Ch, Walther V H 1985 Nucl. Phys. A 436 688Google Scholar

    [8]

    Sick I 2015 J. Phys. Chem. Ref. Data 44 031213Google Scholar

    [9]

    Yerokhin V A, Pachucki K 2016 Phys. Rev. A 94 052508Google Scholar

    [10]

    Pahcucki K, Patkos V, Yerokhin V A 2017 Phys. Rev. A 95 062510Google Scholar

    [11]

    Feng G P, Zheng X, Sun Y R, Hu S M 2015 Phys. Rev. A 91 030502Google Scholar

    [12]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 119 263002Google Scholar

    [13]

    Storry C H, Hessels E A 1998 Phys. Rev. A 58 R8Google Scholar

    [14]

    George M C, Lombardi L D, Hessels E A 2001 Phys. Rev. Lett. 87 173002Google Scholar

    [15]

    Minardi F, Bianchini G, Pastor P C, Giusfredi G, Pavone F S, Inguscio M 1999 Phys. Rev. Lett. 82 1112Google Scholar

    [16]

    Castillega J, Livingston D, Sanders A, Shiner D 2000 Phys. Rev. Lett. 84 4321Google Scholar

    [17]

    Pastor P C, Giusfredi G, Natale P D, Hagel G, Mauro C D, Inguscio M 2004 Phys. Rev. Lett. 92 023001Google Scholar

    [18]

    Zelevinsky T, Farkas D, Gabrilse G 2005 Phys. Rev. Lett. 95 203001Google Scholar

    [19]

    van Rooij R, Borbely J S, Simonet J, Hoogerland M D, Eikema K S E, Rozendaal R A, Vassen W 2011 Science 333 196Google Scholar

    [20]

    Rengelink R J, van der Werf Y, Notermans R P M J W, Jannin R, Eikema K S E, Hoogerland M D, Vassen W 2018 Nat. Phys. 14 1132Google Scholar

    [21]

    Zheng X, Sun Y R, Chen J J, Wen J L, Hu S M 2019 Phys. Rev. A 99 032506Google Scholar

    [22]

    冯高平, 孙羽, 郑昕, 胡水明 2014 物理学报 63 123201Google Scholar

    Feng G P, Sun Y, Zheng X, Hu S M 2014 Acta Phys. Sin. 63 123201Google Scholar

    [23]

    孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明 2012 物理学报 61 170601Google Scholar

    Sun Y, Feng G P, Cheng C F, Tu L Y, Pan H, Yang G M, Hu S M 2012 Acta Phys. Sin. 61 170601Google Scholar

    [24]

    Labeyrie G, Browaeys A, Rooijakkers W, Voelker D, Grosperrin J, Wanner B, Westbrook C I, Aspect A 1999 Eur. Phys. J. D 7 341

    [25]

    Hoogerland M D, Driessen J P J, Vredenbregt E J D, Megens H J L, Schuwer M P, Beijerinck H C W, Van Leeuwen K A K 1996 Appl. Phys. B 62 323

    [26]

    Fahey D W, Parks W F, Schearer L D 1980 J. Phys. E: Sci. Instrum. 13 381Google Scholar

    [27]

    Rothe E W, Neynaber R H, Trujillo S M 1965 J. Chem. Phys. 42 3310Google Scholar

    [28]

    Cheng C F, Jiang W, Yang G M, Sun Y R, Pan H, Gao Y, Liu A W, Hu S M 2010 Rev. Sci. Instrum. 81 123106Google Scholar

    [29]

    Rooijakkers W, Hogervorst W, Vassen W 1997 Opt. Commun. 135 149Google Scholar

    [30]

    Rooijakkers W, Hogervorst W, Vassen W 1996 Opt. Commun. 135 321

    [31]

    Swansson J A, Baldwin K G H, Hoogerland M D, Truscott A G, Buckman S J 2004 Appl. Phys. B 79 485Google Scholar

    [32]

    Hodgman S S, Dall R G, Byron L J, Baldwin K G H, Buckman S J, Truscott A G 2009 Phys. Rev. Lett. 103 053002Google Scholar

    [33]

    Yan Z C, Drake G W F 1994 Phys. Rev. A 50 R1980Google Scholar

    [34]

    Minardi F, Artoni M, Cancio P, Inguscio M, Giusfredi G, Carusotto I 1999 Phys. Rev. A 60 4164Google Scholar

    [35]

    Artoni M, Carusotto I, Minardi F 2000 Phys. Rev. A 62 023402Google Scholar

    [36]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 118 063001Google Scholar

    [37]

    Smiciklas M, Shiner D 2010 Phys. Rev. Lett. 105 123001Google Scholar

  • [1] Guan Hua, Qi Xiao-Qiu, Chen Shao-Long, Shi Ting-Yun, Gao Ke-Lin. Precision spectroscopy and nuclear structure information of Li+ ions. Acta Physica Sinica, 2024, 73(20): 204203. doi: 10.7498/aps.73.20241128
    [2] Xiao Zheng-Rong, Zhang Heng-Zhi, Hua Lin-Qiang, Tang Li-Yan, Liu Xiao-Jun. Precision spectroscopic measurements of few-electron atomic systems in extreme ultraviolet region. Acta Physica Sinica, 2024, 73(20): 204205. doi: 10.7498/aps.73.20241231
    [3] Li Yan, Ren Zhi-Hong. Quantum Fisher information of multi-qubit WV entangled state under Lipkin-Meshkov-Glick model. Acta Physica Sinica, 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [4] Liu Xin, Zhou Xiao-Peng, Wen Wei-Qiang, Lu Qi-Feng, Yan Cheng-Long, Xu Guo-Qin, Xiao Jun, Huang Zhong-Kui, Wang Han-Bing, Chen Dong-Yang, Shao Lin, Yuan Yang, Wang Shu-Xing, Ma Wan-Lu, Ma Xin-Wen. Spectral calibration for electron beam ion trap and precision measurement of M1 transition wavelength in Ar13+. Acta Physica Sinica, 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [5] Zhao Tian-Ze, Yang Su-Hui, Li Kun, Gao Yan-Ze, Wang Xin, Zhang Jin-Ying, Li Zhuo, Zhao Yi-Ming, Liu Yu-Zhe. Accurate measurement of optical fiber time delay based on frequency domain reflectometry. Acta Physica Sinica, 2021, 70(8): 084204. doi: 10.7498/aps.70.20201075
    [6] Sun Ting, Wang Yu, Guo Ren-Tong, Lu Zhi-Wei, Li Jian-Xing. Review on laser-driven high-energy polarized electron and positron beams and γ-rays. Acta Physica Sinica, 2021, 70(8): 087901. doi: 10.7498/aps.70.20210009
    [7] Spectral Calibration for Electron Beam Ion Trap and Precision Measurement of M1 Transition Wavelength in Ar13+. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211663
    [8] Wang Jin, Zhan Ming-Sheng. Test of weak equivalence principle of microscopic particles based on atom interferometers. Acta Physica Sinica, 2018, 67(16): 160402. doi: 10.7498/aps.67.20180621
    [9] Zheng Xin, Sun Yu, Chen Jiao-Jiao, Hu Shui-Ming. Precision spectroscopy on the 2 3S-2 3P transition of atomic helium. Acta Physica Sinica, 2018, 67(16): 164203. doi: 10.7498/aps.67.20180914
    [10] Feng Gao-Ping, Sun Yu, Zheng Xin, Hu Shui-Ming. Design and measurement of a magnetic field for precision spectroscopy of helium. Acta Physica Sinica, 2014, 63(12): 123201. doi: 10.7498/aps.63.123201
    [11] Sun Yu, Feng Gao-Ping, Cheng Cun-Feng, Tu Le-Yi, Pan Hu, Yang Guo-Min, Hu Shui-Ming. Precision spectroscopy of helium using a laser-cooled atomic beam. Acta Physica Sinica, 2012, 61(17): 170601. doi: 10.7498/aps.61.170601
    [12] Cheng Cun-Feng, Yang Guo-Min, Jiang Wei, Pan Hu, Sun Yu, Liu An-Wen, Cheng Guo-Sheng, Hu Shui-Ming. Bright metastable noble gas atomic beam and atom trap using laser cooling. Acta Physica Sinica, 2011, 60(10): 103701. doi: 10.7498/aps.60.103701
    [13] Wang Xin-Liang, Chen Jie, Wang Ye-Bing, Gao Feng, Zhang Shou-Gang, Liu Hai-Feng, Chang Hong. Measurement of velocity distribution for strontium atom beam by Zeeman Scanning technology. Acta Physica Sinica, 2011, 60(10): 103201. doi: 10.7498/aps.60.103201
    [14] Huang Shi-Zhong, Ma Kun, Wu Chang-Yi, Ni Xiu-Bo. Energy and relativistic correction of the 1sns configuration in helium. Acta Physica Sinica, 2008, 57(9): 5469-5475. doi: 10.7498/aps.57.5469
    [15] He Li-Ming, Cao Wei, Chen Xue-Qian, Zhu Yun-Xia. Calculation of helium 1D—3D term intervals for 1snd(n=4—11) states. Acta Physica Sinica, 2005, 54(11): 5077-5081. doi: 10.7498/aps.54.5077
    [16] Zhu Yun-Xia, He Li-Ming, Cao Wei, Ge Zi-Ming. The magnetic fine structure calculation of helium 10G—10M Rydberg states. Acta Physica Sinica, 2005, 54(11): 5082-5088. doi: 10.7498/aps.54.5082
    [17] Liu Yu-Xiao, Zhao Zhen-Hua, Wang Yong-Qiang, Chen Yu-Hong. Variational calculations and relativistic corrections to the nonrelativistic ground energies of the helium atom and the helium-like ions. Acta Physica Sinica, 2005, 54(6): 2620-2624. doi: 10.7498/aps.54.2620
    [18] Wu Xiao-Li, Gou Bing-Cong, Liu Yi-Dong. Relativistic energies of the singly excited and doubly excited Rydberg series in helium. Acta Physica Sinica, 2004, 53(1): 48-53. doi: 10.7498/aps.53.48
    [19] Jiang Wei-Zhou, Fu De-Ji, Wang Zhen-Xia, Ai Xiao-Bai, Zhu Zhi-Yuan. Effects of quantum electromagnetic dynamics in a cylindrical ring cavity. Acta Physica Sinica, 2003, 52(4): 813-822. doi: 10.7498/aps.52.813
    [20] Gao Hong-Yi, Chen Jian-Wen, Xie Hong-Lan, Chen Min, Xiao Ti-Qiao, Zhu Pei-Hong, Xu Zhi-Zhan. . Acta Physica Sinica, 2002, 51(8): 1696-1699. doi: 10.7498/aps.51.1696
Metrics
  • Abstract views:  6117
  • PDF Downloads:  102
  • Cited By: 0
Publishing process
  • Received Date:  03 November 2020
  • Accepted Date:  28 January 2021
  • Available Online:  21 June 2021
  • Published Online:  05 July 2021

/

返回文章
返回