Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Accurate measurement of optical fiber time delay based on frequency domain reflectometry

Zhao Tian-Ze Yang Su-Hui Li Kun Gao Yan-Ze Wang Xin Zhang Jin-Ying Li Zhuo Zhao Yi-Ming Liu Yu-Zhe

Citation:

Accurate measurement of optical fiber time delay based on frequency domain reflectometry

Zhao Tian-Ze, Yang Su-Hui, Li Kun, Gao Yan-Ze, Wang Xin, Zhang Jin-Ying, Li Zhuo, Zhao Yi-Ming, Liu Yu-Zhe
PDF
HTML
Get Citation
  • Optical fiber time delay system has been widely used in optical-controlled phased array antenna, radar distributed network, interferometric optical fiber hydrophone and high-speed photoelectric chip. These applications require high-accuracy and high-stability time delay generated by the system. Time delay measurement directly determines the precision and resolution of the system. Therefore, high-precision time delay measurement method is of great significance in developing the optical fiber delay system. In this paper, progress and problems of optical fiber time delay measurements are discussed. A new method of precisely measuring the time delay in optical fiber is proposed. We use the frequency domain reflectometry (FDR) to avoid the discrepancy between measuring range and measuring precision, which exists in both time-of-flight (TOF) method and phase discrimination approach. An intensity modulated 1064 nm laser signal is used as a light source. The modulation frequency is tuned from 10 MHz to 200 MHz in steps of 0.5 MHz. The spectrum of echo signal is obtained by measuring the amplitudes and phases of echo signals at different frequency points. The delay information is obtained via the inverse fast Fourier transform (IFFT). The precision of delay measurement in our method is determined by step size of frequency variation, and a higher-precision measurement is realized by using interpolation zero algorithm. Since our method is not to modulate the optical frequency, but to control the frequency of the modulation signal loaded on the electro-optic modulator, it is easy to achieve the high-precision and high-linearity frequency modulation. In this paper, theoretical analysis and time delay measurement are used to compare the FDR method with conventional TOF measurement method. The accurate measurement of 33–200 ps is realized, and measurement error is lower than 7 ps. We also design an incremental measurement experiment to study the resolution of the FDR method, which achieves a delay resolution of 3.3 ps. The influence of temperature jitter is analyzed to prove the reliability of experimental results. It proves that the FDR method has a higher measuring accuracy than the TOF method. The time delay measurement precision can be further improved by expanding the modulation bandwidth. Our method is to be applied to an optical fiber delay system to improve the precision and resolution of system delay.
      Corresponding author: Yang Su-Hui, suhuiyang@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61835001, 61875011)
    [1]

    李炎炎, 高彦泽, 李卓, 杨苏辉, 王欣, 张金英 2019 光学学报 39 0806002Google Scholar

    Li Y Y, Gao Y Z, Li Z, Yang S H, Wang X, Zhang J Y 2019 Acta Opt. Sin. 39 0806002Google Scholar

    [2]

    陆强, 张伟, 林荣刚 2012 电子设计工程 20 160Google Scholar

    Lu Q, Zhang W, Lin R G 2012 Elec. Des. Eng. 20 160Google Scholar

    [3]

    何子述, 金林, 韩蕴洁, 严济鸿 2005 电子学报 33 12Google Scholar

    He Z S, Jin L, Han Y J, Yan J H 2005 Acta Electr. Sin. 33 12Google Scholar

    [4]

    Gao Y Z, Zhou L, Wang X, Yan H, Hao K Z, Yang S H, Li Z 2019 IEEE Access 7 93489Google Scholar

    [5]

    Wang X C, Li S P, Jiang X, Hu J T, Xue M, Xu S Z, Pan S L 2019 Chin. Opt. Lett. 17 060601Google Scholar

    [6]

    陈瑞强, 江月松, 裴朝 2013 光学学报 33 0912002Google Scholar

    Chen R Q, Jiang Y S, Pei Z 2013 Acta Opt. Sin. 33 0912002Google Scholar

    [7]

    Prokhorov D, Donchenko S S, Kolmogorov O V, Сhemesova E V 2019 SPIE Optical Metrology, Munich, Germany 2019 p1105714

    [8]

    Cui M, Zeitouny M G, Bhattacharya N 2009 Opt. Lett. 34 1982Google Scholar

    [9]

    Joo K N, Kim S W 2006 Opt. Express 14 5954Google Scholar

    [10]

    冀航 2007 博士学位论文 (武汉: 华中科技大学)

    Ji H 2007 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [11]

    Huang X X, Yin F F, Li J Q, Dai Y T, Zhou Y, Xu K 2018 IEEE 3rd Optoelectronics Global Conference (OGC) 2018 p130

    [12]

    汪友生, 徐小平 2003 北京工业大学学报 29 424Google Scholar

    Wang Y S, Xu X P 2003 J. Beij. Univ. Tech. 29 424Google Scholar

    [13]

    Ma X W, Ma C, Xin M 2015 Elec. Qual. 3 38Google Scholar

    [14]

    Eickhoff W, Ulrich R 1981 Appl. Phys. Lett. 39 693Google Scholar

    [15]

    Illig D W, Jemison W D, Rumbaugh L, Laux A, Mullen L J 2014 Proc. of SPIE 9111 91110RGoogle Scholar

    [16]

    Illig D W, Jemison W D, Rumbaugh L, Lee R, Laux A, Mullen L 2013 Ocean Eng. 58 304Google Scholar

    [17]

    Illig D W, Rumbaugh L, Jemison W D, Laux A, Mullen L 2014 Oceans St. John's, St. John’s, Netherlands, September 14, 2014 p1

    [18]

    Yoshimichi O, Naoshi H 2018 IEEE T. Dielect. El. In. p2467

    [19]

    Chen Y, Zhao Y 2000 Chin. J. Lasers B 9 219

    [20]

    Macdonald R I 1981 Appl. Opt. 20 1840Google Scholar

    [21]

    欧阳竑, 王侠, 韦幕野, 岳耀笠 2020 光电技术应用 35 41Google Scholar

    Ou Yang H, Wang X, Wei M Y, Yue Y L 2020 Electro-Optic Tech. Appl. 35 41Google Scholar

    [22]

    闵帅博, 严利平, 崔建军, 王冬, 束红林, 陈恺 2020 计量学报 41 1332Google Scholar

    Min S B, Yan L P, Cui J J, Wang D, Shu H L, Chen K 2020 ACTA Metro. Sin. 41 1332Google Scholar

  • 图 1  频域反射法测量光纤延时原理图

    Figure 1.  Schematic diagram of optical fiber delay measurement by frequency domain reflectometry.

    图 2  (a)频域采样信号; (b)时域信号

    Figure 2.  (a) Frequency-domain signal; (b) time-domain plot.

    图 3  频域反射法测量光纤延时实验流程图

    Figure 3.  Experiment of optical fiber delay measurement by frequency domain reflection method.

    图 4  103.31 m光纤延时测量 (a)探测器接收到的频域信号; (b)直接IFFT变换得到的时域测量信号; (c) m = 10M, 补零IFFT变换得到的时域测量信号

    Figure 4.  Optical fiber delay measurement of 103.31 m optical fiber: (a) Frequency domain signal; (b) time-domain measurement signals obtained by IFFT transformation; (c) time domain measurement signal obtained by zero-padding IFFT transformation when m = 10M.

    图 5  频域反射法距离精度测试实验示意图

    Figure 5.  Experiment of range accuracy measurement by frequency domain reflection method.

    图 6  频域反射法与相位法对参考延时测量结果的比较

    Figure 6.  Comparison of measurement results between frequency domain reflection method and phase measuring profilometry.

    图 7  频域反射法最小可分辨延时增量的测量, m = 400M, 测量精度6.6 ps; m = 800M, 测量精度3.3 ps; m = 1600M, 测量精度1.6 ps

    Figure 7.  Measurement results of minimum discernible delay increment by frequency domain reflection method, m = 400M, measurement accuracy 6.6 ps; m = 800M, measurement accuracy 3.3 ps; m = 1600M, measurement accuracy 1.6 ps.

    表 1  光纤延时测量结果(单位为ns)

    Table 1.  Measurement results of optical fiber delay (in ns).

    Measurement methodOptical fiber 1Optical fiber 2Optical fiber 3Optical fiber 4
    Time discrimination64.5128.6256.7516.6
    Phase measuring profilometry66.0127.9261.6512.7
    Frequency domain reflection64.5128.7256.8516.3
    DownLoad: CSV
  • [1]

    李炎炎, 高彦泽, 李卓, 杨苏辉, 王欣, 张金英 2019 光学学报 39 0806002Google Scholar

    Li Y Y, Gao Y Z, Li Z, Yang S H, Wang X, Zhang J Y 2019 Acta Opt. Sin. 39 0806002Google Scholar

    [2]

    陆强, 张伟, 林荣刚 2012 电子设计工程 20 160Google Scholar

    Lu Q, Zhang W, Lin R G 2012 Elec. Des. Eng. 20 160Google Scholar

    [3]

    何子述, 金林, 韩蕴洁, 严济鸿 2005 电子学报 33 12Google Scholar

    He Z S, Jin L, Han Y J, Yan J H 2005 Acta Electr. Sin. 33 12Google Scholar

    [4]

    Gao Y Z, Zhou L, Wang X, Yan H, Hao K Z, Yang S H, Li Z 2019 IEEE Access 7 93489Google Scholar

    [5]

    Wang X C, Li S P, Jiang X, Hu J T, Xue M, Xu S Z, Pan S L 2019 Chin. Opt. Lett. 17 060601Google Scholar

    [6]

    陈瑞强, 江月松, 裴朝 2013 光学学报 33 0912002Google Scholar

    Chen R Q, Jiang Y S, Pei Z 2013 Acta Opt. Sin. 33 0912002Google Scholar

    [7]

    Prokhorov D, Donchenko S S, Kolmogorov O V, Сhemesova E V 2019 SPIE Optical Metrology, Munich, Germany 2019 p1105714

    [8]

    Cui M, Zeitouny M G, Bhattacharya N 2009 Opt. Lett. 34 1982Google Scholar

    [9]

    Joo K N, Kim S W 2006 Opt. Express 14 5954Google Scholar

    [10]

    冀航 2007 博士学位论文 (武汉: 华中科技大学)

    Ji H 2007 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [11]

    Huang X X, Yin F F, Li J Q, Dai Y T, Zhou Y, Xu K 2018 IEEE 3rd Optoelectronics Global Conference (OGC) 2018 p130

    [12]

    汪友生, 徐小平 2003 北京工业大学学报 29 424Google Scholar

    Wang Y S, Xu X P 2003 J. Beij. Univ. Tech. 29 424Google Scholar

    [13]

    Ma X W, Ma C, Xin M 2015 Elec. Qual. 3 38Google Scholar

    [14]

    Eickhoff W, Ulrich R 1981 Appl. Phys. Lett. 39 693Google Scholar

    [15]

    Illig D W, Jemison W D, Rumbaugh L, Laux A, Mullen L J 2014 Proc. of SPIE 9111 91110RGoogle Scholar

    [16]

    Illig D W, Jemison W D, Rumbaugh L, Lee R, Laux A, Mullen L 2013 Ocean Eng. 58 304Google Scholar

    [17]

    Illig D W, Rumbaugh L, Jemison W D, Laux A, Mullen L 2014 Oceans St. John's, St. John’s, Netherlands, September 14, 2014 p1

    [18]

    Yoshimichi O, Naoshi H 2018 IEEE T. Dielect. El. In. p2467

    [19]

    Chen Y, Zhao Y 2000 Chin. J. Lasers B 9 219

    [20]

    Macdonald R I 1981 Appl. Opt. 20 1840Google Scholar

    [21]

    欧阳竑, 王侠, 韦幕野, 岳耀笠 2020 光电技术应用 35 41Google Scholar

    Ou Yang H, Wang X, Wei M Y, Yue Y L 2020 Electro-Optic Tech. Appl. 35 41Google Scholar

    [22]

    闵帅博, 严利平, 崔建军, 王冬, 束红林, 陈恺 2020 计量学报 41 1332Google Scholar

    Min S B, Yan L P, Cui J J, Wang D, Shu H L, Chen K 2020 ACTA Metro. Sin. 41 1332Google Scholar

  • [1] Guo Zhong-Kai, Li Yong-Gang, Yu Bo-Cheng, Zhou Shi-Chao, Meng Qing-Yu, Lu Xin-Xin, Huang Yi-Fan, Liu Gui-Peng, Lu Jun. Research progress of lock-in amplifiers. Acta Physica Sinica, 2023, 72(22): 224206. doi: 10.7498/aps.72.20230579
    [2] Li Yan, Ren Zhi-Hong. Quantum Fisher information of multi-qubit WV entangled state under Lipkin-Meshkov-Glick model. Acta Physica Sinica, 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [3] Liu Xin, Zhou Xiao-Peng, Wen Wei-Qiang, Lu Qi-Feng, Yan Cheng-Long, Xu Guo-Qin, Xiao Jun, Huang Zhong-Kui, Wang Han-Bing, Chen Dong-Yang, Shao Lin, Yuan Yang, Wang Shu-Xing, Ma Wan-Lu, Ma Xin-Wen. Spectral calibration for electron beam ion trap and precision measurement of M1 transition wavelength in Ar13+. Acta Physica Sinica, 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [4] Chen Jiao-Jiao, Sun Yu, Wen Jin-Lu, Hu Shui-Ming. A bright and stable beam of slow metastable helium atoms. Acta Physica Sinica, 2021, 70(13): 133201. doi: 10.7498/aps.70.20201833
    [5] Spectral Calibration for Electron Beam Ion Trap and Precision Measurement of M1 Transition Wavelength in Ar13+. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211663
    [6] Wang Jin, Zhan Ming-Sheng. Test of weak equivalence principle of microscopic particles based on atom interferometers. Acta Physica Sinica, 2018, 67(16): 160402. doi: 10.7498/aps.67.20180621
    [7] Tan Wen-Hai, Wang Jian-Bo, Shao Cheng-Gang, Tu Liang-Cheng, Yang Shan-Qing, Luo Peng-Shun, Luo Jun. Recent progress in testing Newtonian inverse square law at short range. Acta Physica Sinica, 2018, 67(16): 160401. doi: 10.7498/aps.67.20180636
    [8] Guan Hua, Huang Yao, Li Cheng-Bin, Gao Ke-Lin. 40Ca+ optical frequency standards with high accuracy. Acta Physica Sinica, 2018, 67(16): 164202. doi: 10.7498/aps.67.20180876
    [9] Pan Hao, Qu Xing-Hua, Shi Chun-Zhao, Li Ya-Ting, Zhang Fu-Min. Precision evaluation method of measuring frequency modulated continuous wave laser distance. Acta Physica Sinica, 2018, 67(9): 090201. doi: 10.7498/aps.67.20180142
    [10] Liu Jian-Ping, Wu Jun-Fei, Li Qing, Xue Chao, Mao De-Kai, Yang Shan-Qing, Shao Cheng-Gang, Tu Liang-Cheng, Hu Zhong-Kun, Luo Jun. Progress on the precision measurement of the Newtonian gravitational constant G. Acta Physica Sinica, 2018, 67(16): 160603. doi: 10.7498/aps.67.20181381
    [11] Wang Lei, Guo Hao, Chen Yu-Lei, Wu Da-Jin, Zhao Rui, Liu Wen-Yao, Li Chun-Ming, Xia Mei-Jing, Zhao Bin-Bin, Zhu Qiang, Tang Jun, Liu Jun. A method of measuring micro-displacement based on spin magnetic resonance effect of diamond color center. Acta Physica Sinica, 2018, 67(4): 047601. doi: 10.7498/aps.67.20171914
    [12] Peng Shijie, Liu Ying, Ma Wenchao, Shi Fazhan, Du Jiangfeng. High-resolution magnetometry based on nitrogen-vacancy centers in diamond. Acta Physica Sinica, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [13] He Lin, Yi Shi-He, Lu Xiao-Ge. Experimental study on the density characteristics of a supersonic turbulent boundary layer. Acta Physica Sinica, 2017, 66(2): 024701. doi: 10.7498/aps.66.024701
    [14] Mu Xiu-Li, Li Chuan-Liang, Deng Lun-Hua, Wang Hai-Ling. Spectra of I2+ for possible measurement of α and μ constant. Acta Physica Sinica, 2017, 66(23): 233301. doi: 10.7498/aps.66.233301
    [15] Wang Jin-Tao, Liu Zi-Yong. Method of accurately measuring silicon sphere density difference based on hydrostatic suspension principls. Acta Physica Sinica, 2013, 62(3): 037702. doi: 10.7498/aps.62.037702
    [16] Deng Yu-Qiang, Lang Li-Ying, Xing Qi-Rong, Cao Shi-Ying, Yu Jing, Xu Tao, Li Jian, Xiong Li-Min, Wang Qing-Yue, Zhang Zhi-Gang. Terahertz time-frequency analysis with Gabor wavelet-transform. Acta Physica Sinica, 2008, 57(12): 7747-7752. doi: 10.7498/aps.57.7747
    [17] Wang Fan-Zhen, Qi Guo-Yuan, Chen Zeng-Qiang, Yuan Zhu-Zhi. On a four-winged chaotic attractor. Acta Physica Sinica, 2007, 56(6): 3137-3144. doi: 10.7498/aps.56.3137
    [18] Deng Yu-Qiang, Xing Qi-Rong, Lang Li-Ying, Chai Lu, Wang Qing-Yue, Zhang Zhi-Gang. Wavelet-transform in terahertz time-domain spectroscopy. Acta Physica Sinica, 2005, 54(11): 5224-5227. doi: 10.7498/aps.54.5224
    [19] . Acta Physica Sinica, 2000, 49(2): 262-266. doi: 10.7498/aps.49.262
    [20] XIN XIAN-JIE. A FREQUENCY SPECTRUM ANALYZER FOR SINGLE TRANSIENT PROCESSES. Acta Physica Sinica, 1977, 26(1): 22-33. doi: 10.7498/aps.26.22
Metrics
  • Abstract views:  5271
  • PDF Downloads:  89
  • Cited By: 0
Publishing process
  • Received Date:  06 July 2020
  • Accepted Date:  22 December 2020
  • Available Online:  01 April 2021
  • Published Online:  20 April 2021

/

返回文章
返回