Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Precision measurement of magnetic fields using suspended ferromagnetic torsional oscillator and its applications

Wu Lie-Lie Ren Yi-Chong Xue Fei

Citation:

Precision measurement of magnetic fields using suspended ferromagnetic torsional oscillator and its applications

Wu Lie-Lie, Ren Yi-Chong, Xue Fei
PDF
Get Citation
  • The ferromagnetic-mechanical system can be employed as a magnetometer by monitoring its mechanical response to magnetic signals. Such a system can surpass the ERL in terms of sensitivity, due to the ultra-high spin density and strong spin-lattice interactions inherent in ferromagnetic materials. A levitated ferromagnetic-mechanical system can further enhance its quality factor by eliminating clamp dissipation, thus achieving higher magnetic sensitivity. This paper proposes a magnetometer based on a magnetically levitated ferromagnetic torsional oscillator (FMTO), which converts magnetic signals into torque to drive the oscillator. An optical method is then used to measure the torsional motion and extract the magnetic signal. The resonance frequency of this FMTO system can be controlled by modifying the bias field, offering enhanced flexibility and control.
    After analyzing the influence of fundamental noise, including thermal noise and quantum measurement noise (SQL), the magnetic noise floor of the FMTO made from NdFeB versus its radius is illustrated in Fig.3.(b). The quantum measurement noise (SQL) is much lower than both thermal noise and ERL, indicating that thermal noise is the dominant factor affecting the magnetic sensitivity of the FMTO. The magnetic sensitivity of the FMTO system at 4.2 K surpasses the ERL by three orders of magnitude, confirming the significant potential of the FMTO system for high-precision magnetic measurements.
    One of the most promising applications of ultra-high sensitivity magnetic sensors is the search for exotic interactions, which is typically achieved by measuring pseudo-magnetic fields. The accuracy of detecting exotic interactions depends on two main factors: the magnetometer’s sensitivity and the distance between the sensor and the source. The ERL presents a challenge in satisfying both factors simultaneously. Improving magnetic sensitivity typically increases the radius of the sensor, which in turn increases the distance between the sensor and the source, limiting the accuracy of detecting exotic interactions. Thus, ERL limits the precision of exotic interaction detection, while the FMTO, with its superior sensitivity, is expected to significantly advance the detection of exotic interactions.
    Fig.4.(a) illustrates the fundamental principle behind exotic interaction detection. If an exotic interaction is present, the BGO nuclei oscillating perpendicular to the paper will generate a pseudo-magnetic field along the vertical direction. This pseudo-magnetic field will induce torsional motion in the FMTO, allowing for the determination of the lower limit of the coupling constant for the new interaction through measurement of the torsional motion. The exotic interaction probe is shown in Fig.4.(b). Existing experiments have approached the ERL at Compton wavelengths on millimeter and micrometer scales. However, the FMTO system, with a bias field of 1 µT, surpasses the ERL by up to five orders of magnitude in sub-centimeter Compton wavelengths and exceeds existing experimental results by two to nine orders of magnitude. These results highlight the potential advantages of FMTO-based magnetometers in probing exotic interactions.
    In conclusion, this paper proposes a magnetometer configuration based on a levitated ferromagnetic torsional oscillator (FMTO) and provides a comprehensive analysis of its mechanical response, fundamental noise, magnetic performance, and applications in fundamental research. It is demonstrated that the FMTO-based magnetometer can surpass the ERL by approximately three orders of magnitude in sensitivity at a temperature of 4.2 K. Furthermore, an FMTO with a bias magnetic field of 1 µT and a temperature of 50 mK significantly outperforms the ERL in probing exotic interactions, exceeding existing experiments by two to nine orders of magnitude.
  • [1]

    Xia H, Ben Amar Baranga A, Hoffman D, Romalis M V 2006 Appl. Phys. Lett. 89211104

    [2]

    Harada S, Sasada I, Hang F 2015 Electr. Commun. Jap. 9820

    [3]

    Dolabdjian C, Saez S, Reyes Toledo A, Robbes D 1998 Rev. Sci. Instrum. 693678

    [4]

    Germain-Jones D T 1957 J. Sci. Instrum. 341

    [5]

    Mohanty I, Nagendran R, Arasu A V T, Baskaran R, Mani A 2018 Meas. Sci. Technol. 29105601

    [6]

    Nabighian M N, Grauch V J S, Hansen R O, LaFehr T R, Li Y, Peirce J W, Phillips J D, Ruder M E 2005 Geophysics 7033

    [7]

    Zhao L, Yan T J 2013 Acta Phys. Sin. 62067702(in Chinses) [赵龙, 颜廷君2013物理学报62067702]

    [8]

    Pedersen L W, Merenyi L 2016 J. Ind. Geophys. Union. 230

    [9]

    Jiang M, Su H W, Garcon A, Peng X H, Budker D 2021 Nat. Phys. 171402

    [10]

    Wang Y H, Huang Y, Guo C, Jiang M, Kang X, Su H W, Qin Y S, Ji W, Hu D D, Peng X H, Budker D 2023 Sci. Adv. 9 eade0353

    [11]

    Wang Y H, Su H W, Jiang M, Huang Y, Qin Y H, Guo C, Wang Z H, Hu D D, Ji W, Fadeev P, Budker D 2022 Phys. Rev. Lett. 129051801

    [12]

    Su H W, Wang Y H, Jiang M, Ji W, Fadeev P, Hu D D, Peng X H, Budker D 2021 Sci. Adv. 7 eabi9535

    [13]

    Braginsky V B 1968 Sov. Phys. Jetp. 26831

    [14]

    Braginsky V B, Vorontsov Y I 1975 Sov. Phys. Usp. 17644

    [15]

    Mitchell M W, Palacios Alvarez S 2020 Rev. Mod. Phys. 92021001

    [16]

    Vinante A, Timberlake C, Budker D, Kimball D F J, Sushkov A O, Ulbricht H 2021 Phys. Rev. Lett. 127070801

    [17]

    Vinante A, Falferi P, Gasbarri G, Setter A, Timberlake C, Ulbricht H 2020 Phys. Rev. Appl. 13064027

    [18]

    Jackson Kimball D F, Sushkov A O, Budker D 2016 Phys. Rev. Lett. 116190801

    [19]

    Fadeev P, Wang T, Band Y B, Budker D, Graham P W, Sushkov A O, Kimball D F J 2021 Phys. Rev. D 103044056

    [20]

    Fadeev P, Timberlake C, Wang T, Vinante A, Band Y B, Budker D, Sushkov A O, Ulbricht H, Kimball D F J 2021 Quantum. Sci. Technol. 6024006

    [21]

    Zhang L, Liu L, Cao L 2010 Acta Phys. Sin. 591494(in Chinses) [张莉, 刘立, 曹力2010物理学报591494

    [22]

    Slezak B R, Lewandowski C W, Hsu J F, D Urso B 2018 New J. Phys. 20063028

    [23]

    Timberlake C, Gasbarri G, Vinante A, Setter A, Ulbricht H 2019 Appl. Phys. Lett. 115224101

    [24]

    Zheng D, Leng Y C, Kong X, Li R, Wang Z Z, Luo X H, Zhao J, Duan C K, Huang P, Du J F, Matteo C, Bassi A 2020 Phys. Rev. Res. 2013057

    [25]

    Gieseler J, Novotny L, Quidant R 2013 Nat. Phys. 9806

    [26]

    Millen J, Fonseca P Z G, Mavrogordatos T, Monteiro T S, Barker P F 2015 Phys. Rev. Lett. 114123602

    [27]

    Wang T, Lourette S, O Kelley S R, Kayci M, Band Y B, Kimball D F J, Sushkov A O, Budker D 2019 Phys. Rev. Appl. 11044041

    [28]

    Schloss J M, Barry J F, Turner M J, Walsworth R L 2018 Phys. Rev. Appl. 10034044

    [29]

    Callen H B, Welton T A 1951 Phys. Rev. 8334

    [30]

    Nimmrichter S, Hornberger K, Hammerer K 2014 Phys. Rev. Lett. 113020405

    [31]

    Losby J E, Freeman M R 2016 arXiv:1601.00674

    [32]

    Leslie T M, Weisman E, Khatiwada R, Long J C 2014 Phys. Rev. D 89114022

    [33]

    Wu L H, Lin S C, Kong X, Wang M Q, Zhou J W, Duan C K, Huang P, Zhang L, Du J F 2023 PNAS 120 e2302145120

    [34]

    Ding J H, Wang J B, Zhou X, Liu Y, Sun K, Adeyeye A O, Fu H X, Ren X F, Li S M, Luo P S, Lan Z, Yang S Q, Luo J 2020 Phys. Rev. Lett. 124161801

    [35]

    Wu D G, Liang H, Jiao M, Cai Y F, Duan C K, Wang Y, Rong X, Du J F 2023 Phys. Rev. Lett. 131071801

    [36]

    Piegsa F M, Pignol G 2012 Phys. Rev. Lett. 108181801

    [37]

    Kim Y J, Chu P H, Savukov I 2018 Phys. Rev. Lett. 121091802

  • [1] Wen Tao, Ma Yu-Hang, Wang De-Quan, Chen Hao-Ran, Li Yan-Fang, Xu Yang, Wang Zhi-Guang. Dual-mode Low Noise Large Range Magnetic Sensor based on Giant Magnetoimpedance Effect. Acta Physica Sinica, doi: 10.7498/aps.74.20241498
    [2] Tu Bing-Sheng. Precise measurements of electron g factors in bound states of few-electron ions. Acta Physica Sinica, doi: 10.7498/aps.73.20240683
    [3] Guo Zhong-Kai, Li Yong-Gang, Yu Bo-Cheng, Zhou Shi-Chao, Meng Qing-Yu, Lu Xin-Xin, Huang Yi-Fan, Liu Gui-Peng, Lu Jun. Research progress of lock-in amplifiers. Acta Physica Sinica, doi: 10.7498/aps.72.20230579
    [4] Li Yan, Ren Zhi-Hong. Quantum Fisher information of multi-qubit WV entangled state under Lipkin-Meshkov-Glick model. Acta Physica Sinica, doi: 10.7498/aps.72.20231179
    [5] Liu Xin, Zhou Xiao-Peng, Wen Wei-Qiang, Lu Qi-Feng, Yan Cheng-Long, Xu Guo-Qin, Xiao Jun, Huang Zhong-Kui, Wang Han-Bing, Chen Dong-Yang, Shao Lin, Yuan Yang, Wang Shu-Xing, Ma Wan-Lu, Ma Xin-Wen. Spectral calibration for electron beam ion trap and precision measurement of M1 transition wavelength in Ar13+. Acta Physica Sinica, doi: 10.7498/aps.71.20211663
    [6] Chen Jiao-Jiao, Sun Yu, Wen Jin-Lu, Hu Shui-Ming. A bright and stable beam of slow metastable helium atoms. Acta Physica Sinica, doi: 10.7498/aps.70.20201833
    [7] Spectral Calibration for Electron Beam Ion Trap and Precision Measurement of M1 Transition Wavelength in Ar13+. Acta Physica Sinica, doi: 10.7498/aps.70.20211663
    [8] Zhao Tian-Ze, Yang Su-Hui, Li Kun, Gao Yan-Ze, Wang Xin, Zhang Jin-Ying, Li Zhuo, Zhao Yi-Ming, Liu Yu-Zhe. Accurate measurement of optical fiber time delay based on frequency domain reflectometry. Acta Physica Sinica, doi: 10.7498/aps.70.20201075
    [9] Gao Peng-Lin, Zheng Hao, Sun Guang-Ai. Constraints of neutron star on new interaction ofspin-dependent axial-vector coupling. Acta Physica Sinica, doi: 10.7498/aps.68.20190477
    [10] Wang Jin, Zhan Ming-Sheng. Test of weak equivalence principle of microscopic particles based on atom interferometers. Acta Physica Sinica, doi: 10.7498/aps.67.20180621
    [11] Guan Hua, Huang Yao, Li Cheng-Bin, Gao Ke-Lin. 40Ca+ optical frequency standards with high accuracy. Acta Physica Sinica, doi: 10.7498/aps.67.20180876
    [12] Tan Wen-Hai, Wang Jian-Bo, Shao Cheng-Gang, Tu Liang-Cheng, Yang Shan-Qing, Luo Peng-Shun, Luo Jun. Recent progress in testing Newtonian inverse square law at short range. Acta Physica Sinica, doi: 10.7498/aps.67.20180636
    [13] Liu Jian-Ping, Wu Jun-Fei, Li Qing, Xue Chao, Mao De-Kai, Yang Shan-Qing, Shao Cheng-Gang, Tu Liang-Cheng, Hu Zhong-Kun, Luo Jun. Progress on the precision measurement of the Newtonian gravitational constant G. Acta Physica Sinica, doi: 10.7498/aps.67.20181381
    [14] Wang Lei, Guo Hao, Chen Yu-Lei, Wu Da-Jin, Zhao Rui, Liu Wen-Yao, Li Chun-Ming, Xia Mei-Jing, Zhao Bin-Bin, Zhu Qiang, Tang Jun, Liu Jun. A method of measuring micro-displacement based on spin magnetic resonance effect of diamond color center. Acta Physica Sinica, doi: 10.7498/aps.67.20171914
    [15] Peng Shijie, Liu Ying, Ma Wenchao, Shi Fazhan, Du Jiangfeng. High-resolution magnetometry based on nitrogen-vacancy centers in diamond. Acta Physica Sinica, doi: 10.7498/aps.67.20181084
    [16] Mu Xiu-Li, Li Chuan-Liang, Deng Lun-Hua, Wang Hai-Ling. Spectra of I2+ for possible measurement of α and μ constant. Acta Physica Sinica, doi: 10.7498/aps.66.233301
    [17] Yu Zhen-Tao, Lü Jun-Wei, Bi Bo, Zhou Jing. A vehicle magnetic noise compensation method for the tetrahedron magnetic gradiometer. Acta Physica Sinica, doi: 10.7498/aps.63.110702
    [18] Wang Jin-Tao, Liu Zi-Yong. Method of accurately measuring silicon sphere density difference based on hydrostatic suspension principls. Acta Physica Sinica, doi: 10.7498/aps.62.037702
    [19] Cheng Tai-Min, Luo Hong-Chao, Li Lin. Effect of optical phonon-magnon interaction on the magnon life-time at finite temperature. Acta Physica Sinica, doi: 10.7498/aps.57.6531
    [20] Shi Qing-Fan, Li Liang-Sheng, Zhang Mei. Effectivity of Hamiltonian terms of "forbidden" 3-magnon interaction. Acta Physica Sinica, doi: 10.7498/aps.53.3916
Metrics
  • Abstract views:  35
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Available Online:  17 December 2024

/

返回文章
返回