Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dual-mode low noise large range magnetic sensor based on giant magnetoimpedance effect

WEN Tao MA Yuhang WANG Dequan CHEN Haoran LI Yanfang XU Yang WANG Zhiguang

Citation:

Dual-mode low noise large range magnetic sensor based on giant magnetoimpedance effect

WEN Tao, MA Yuhang, WANG Dequan, CHEN Haoran, LI Yanfang, XU Yang, WANG Zhiguang
PDF
HTML
Get Citation
  • Magnetic sensors are widely used in the fields of navigation, transportation, robotics, automation, and medical equipment, and the performance requirements of sensors are getting higher and higher. In this work, a bimodal magnetic sensor with two operating modes, which has the advantages of large range and low noise, is proposed. The sensor consists of a 640 μH core-wound inductor in series with a 100 pF capacitor. When the external magnetic field changes, the magnetization state of the iron core in the inductor will change, the inductance value will change accordingly. The resonant frequency and impedance value of the sensor will also change with the magnetic field. In this work, the giant magnetic impedance characteristics of an RLC series circuit are analyzed, and the relationship between magnetic permeability, inductance value, and external magnetic field is established, and the series resonant frequency of the circuit is simulated to calculate the characteristics of the circuit with respect to the inductance variation.Then, two testing systems are set up to test the relationship between resonance frequency and magnetic field, as well as the noise characteristics of the sensor. In the impedance mode, the effects of capacitance, drive signal frequency, and static bias magnetic field on the sensor noise floor are first analyzed to determine the optimal parameters of the sensor. When the series capacitance of the sensor is 100 pF, the drive signal frequency will be 1 MHz and the static bias magnetic field will be 7.66 Oe. The sensor has the optimal performance with an equivalent noise floor of about $ {200}\;{\text{pT/}}\sqrt {{\text{Hz}}} @1 {\text{Hz}} $, an impedance rate of change sensitivity of 160.6%/Oe, and a linear range of about 2 Oe. In the frequency mode, the sensor operates linearly up to 25 Oe. A logistic regression model is used to fit the resonant frequency to the magnetic field variation, and the fitted value reaches 0.9974. When the static bias magnetic field is about 7.66 Oe, the sensor sensitivity will be about 47 kHz/Oe. Moreover, compared with other common types of magnetic sensors on the market, this sensor has the commercial component cost of only ¥10, and excellent performance, and huge market potential.
  • 图 1  电感与电容串联后的等效电路模型

    Figure 1.  Equivalent circuit model of inductor and capacitor in series.

    图 2  等效电路串联谐振仿真 (a) RLC串联等效电路模型仿真结果; (a) 串联谐振频率随电感的变化

    Figure 2.  Equivalent circuit series resonance simulation: (a) Simulation results obtained by RLC series equivalent circuit model; (b) variation of series resonance frequency with inductance.

    图 3  电感元件特征 (a) 电感实物图; (b) 电感值随磁场的变化

    Figure 3.  Inductor characteristic: (a) Physical drawings of inductors; (b) variation of inductance value with magnetic field.

    图 4  谐振频率-磁场传感器测试平台

    Figure 4.  Resonant frequency-magnetic field sensor test platform.

    图 5  阻抗-磁场传感器测试平台

    Figure 5.  Impedance-magnetic field sensor test platform.

    图 6  不同条件下的最小等效磁噪声与激励信号频率关系 (a) 电容为91 pF; (b) 电容为100 pF; (c) 电容为110 pF; (d) 电容为120 pF

    Figure 6.  Relationship between minimum equivalent magnetic noise and frequency of excitation signal under different conditions: (a) The capacitance is 91 pF; (b) the capacitance is 100 pF; (c) the capacitance is 110 pF; (d) the capacitance is 120 pF.

    图 7  GMI传感器特性 (a)不同频率激励信号时GMI传感器的阻抗随磁场的变化; (b) 不同频率激励信号时GMI传感器阻抗变化率随磁场的变化; (c) 不同频率激励信号时GMI传感器阻抗变化率灵敏度随磁场的变化; (d) 在施加3 nT和300 pT的微弱磁信号时GMI传感器的等效磁噪声幅度谱; (e) 传感器阻抗随外加磁场的变化以及线性拟合曲线; (f) 施加1 Hz正弦交流磁信号时传感器的阻抗变化量随磁场强度的变化

    Figure 7.  GMI sensor characteristics: (a) The impedance of GMI sensor vs. magnetic field for different frequency excitation signals; (b) the impedance variation of GMI sensor vs. magnetic field for different frequency excitation signals; (c) impedance change rate sensitivity of GMI sensor vs. magnetic field for different frequency excitation signals; (d) the equivalent magnetic noise amplitude spectrum of the GMI sensor when a weak magnetic signal of 3 nT or 300 pT is applied; (e) sensor impedance vs. applied magnetic field and corresponding linear fitting curve; (f) sensor impedance variation vs. magnetic field intensity when 1 Hz sinusoidal AC magnetic signal is applied.

    图 8  磁传感器谐振频率随磁场强度的变化及拟合曲线

    Figure 8.  Resonance frequency of magnetic sensor vs. magnetic field intensity curve and corresponding fitting curve.

    图 9  谐振频率-磁场数值拟合曲线及灵敏度曲线

    Figure 9.  Resonance frequency vs. magnetic field fitting curve and sensitivity curve.

    表 1  最小等效磁噪声及其对应参数

    Table 1.  Minimum equivalent magnetic noise and its corresponding parameters.

    电容值/pF最小等效磁
    噪声/nT
    激励信号
    频率/MHz
    偏置磁场/Oe
    910.550.87.66
    1000.4917.66
    1100.7515.9
    1200.5917.66
    DownLoad: CSV

    表 2  双模态磁传感器与商用磁传感器对比

    Table 2.  Comparison of dual-mode magnetic sensor and commercial magnetic sensor.

    类型型号厂家本底噪声/
    (nT@1 Hz)
    量程/
    ±Oe
    灵敏度截止频率价格
    AMRMMC5983 MA美新半导体4081 kHz~34
    AMRHMC1001霍尼韦尔0.553.2 mV/(V·Oe)5 MHz~100
    GMRAA002NVE21536 mV/(V·Oe)1 MHz~150
    TMRTMR2901多维2825 mV/(V·Oe)~350
    TMRTLI5590 - A6 W英飞凌501.85 mV/(V·Oe)5 kHz~20
    TMRCT815 XAllegro805 mV/(V·Oe)100 Hz~10
    MicrofluxgateDRV425德州仪器4201.22 mA/Oe32 kHz~30
    FluxgateMag651Bartington~0.020.65 V/Oe5 Hz>35000
    HallDRV5055
    A1/Z1
    德州仪器13021010 mV/Oe20 kHz~10
    GMIMI-CB-1 DJAichi~0.10.02500 V/Oe10 kHz~10000
    GMIGC-CC-101 A国创智能~0.060.62 kHz~5000
    LC串联磁传感器阻抗模式~0.26—8 Oe160.6%/Oe~10
    频率模式5—30 Oe47 kHz/Oe(max)~10
    DownLoad: CSV
  • [1]

    Auster H U, Glassmeier K H, Magnes W, Aydogar O, Baumjohann W, Constantinescu D, Fischer D, Fornacon K H, Georgescu E, Harvey P, Hillenmaier O, Kroth R, Ludlam M, Narita Y, Nakamura R, Okrafka K, Plaschke F, Richter I, Schwarzl H, Stoll B, Valavanoglou A, Wiedemann M 2008 Space Sci. Rev. 141 235Google Scholar

    [2]

    Du A M, Zhang Y, Li H Y, Qiao D H, Yi Z, Zhang T L, Meng L F, Ge Y S, Luo H, Zhao L, Sun S Q, Ou J M, Li Z, Feng X, Dai J L 2020 Space Sci. Rev. 216 135Google Scholar

    [3]

    Fimbombaya H S, Mvungi N H, Hamisi N Y, Iddi H U 2018 Modell. Simul. Eng. 2018 2591304

    [4]

    Kim H J, Hirayama H, Kim S, Han K J, Zhang R, Choi J W 2017 IEEE Access 5 21264Google Scholar

    [5]

    Kuwahata A, Tanaka R, Matsuda S, Amada E, Irino T, Mayanagi S, Chikaki S, Saito I, Tanabe N, Kawakubo H, Takeuchi H, Kitagawa Y, Kusakabe M, Sekino M 2020 Sci. Rep. 10 1798Google Scholar

    [6]

    Limes M E, Foley E L, Kornack T W, Caliga S, McBride S, Braun A, Lee W, Lucivero V G, Romalis M V 2020 Phys. Rev. Appl. 14 011002Google Scholar

    [7]

    Liu X Y, Liu C H, Han W, Pong P W T 2019 IEEE Sens. J. 19 1683Google Scholar

    [8]

    Wang S X, Peng D L, Wu Z Y 2019 IEEE Sens. J. 19 9818Google Scholar

    [9]

    Sekino M, Kuwahata A, Ookubo T, Shiozawa M, Ohashi K, Kaneko M, Saito I, Inoue Y, Ohsaki H, Takei H, Kusakabe M 2018 Sci. Rep. 8 1195Google Scholar

    [10]

    Tsukada K, Hayashi M, Nakamura Y, Sakai K, Kiwa T 2018 IEEE Trans. Magn. 54 6202205

    [11]

    Ennen I, Kappe D, Rempel T, Glenske C, Hütten A 2016 Sensors 16 904Google Scholar

    [12]

    韩秀峰, 张雨, 丰家峰, 陈川, 邓辉, 黄辉, 郭经红, 梁云, 司文荣, 江安烽, 魏红祥 2022 物理学报 71 238502Google Scholar

    Han X F, Zhang Y, Feng J F, Chen C A, Deng H, Huang H, Guo J H, Liang Y, Si W R, Jiang A F, Wei H X 2022 Acta Phys. Sin. 71 238502Google Scholar

    [13]

    Han X F, Zhang Y, Wang Y Z, Huang L, Ma Q L, Liu H F, Wan C H, Feng J F, Yin L, Yu G Q, Yu T, Yan Y 2021 Chin. Phys. Lett. 38 128501Google Scholar

    [14]

    Khan M A, Sun J, Li B D, Przybysz A, Kosel J 2021 Eng. Res. Express 3 022005Google Scholar

    [15]

    Lenz J, Edelstein A S 2006 IEEE Sens. J. 6 631Google Scholar

    [16]

    Narod B B, Miles D M 2024 Geosci. Instrum. Methods Data Syst. 13 131Google Scholar

    [17]

    Wang Z G, Wen T, Su W, Hu C J, Chen Y C, Hu Z Q, Wu J G, Zhou Z Y, Liu M 2021 IEEE Trans. Ind. Electron. 68 7577Google Scholar

    [18]

    Panina L V, Mohri K 1994 Appl. Phys. Lett. 65 1189Google Scholar

    [19]

    Phan M H, Peng H X 2008 Prog. Mater Sci. 53 323Google Scholar

    [20]

    Kurlyandskaya G V, Sánchez M L, Hernando B, Prida V M, Gorria P, Tejedor M 2003 Appl. Phys. Lett. 82 3053Google Scholar

    [21]

    Panina L V, Mohri K, Bushida K, Noda M 1994 J. Appl. Phys. 76 6198Google Scholar

    [22]

    Phan M H, Peng H X 2008 Prog. Mater Sci. 53 323Google Scholar

    [23]

    Vazquez M, Knobel M, Sanchez M L, Valenzuela R, Zhukov A P 1997 Sens. Actuator A Phys. 59 20Google Scholar

    [24]

    Butta M, Yamashita S, Sasada I 2011 IEEE Trans. Magn. 47 3748Google Scholar

    [25]

    Malatek M, Dufay B, Saez S, Dolabdjian C 2013 Sens. Actuator A Phys. 204 20Google Scholar

    [26]

    Malátek M, Kraus L 2010 Sens. Actuator A Phys. 164 41Google Scholar

    [27]

    Dufay B, Saez S, Dolabdjian C P, Yelon A, Ménard D 2013 IEEE Sens. J. 13 379Google Scholar

    [28]

    Ding L H, Saez S, Dolabdjian C, Melo L G C, Yelon A, Ménard D 2009 IEEE Sens. J. 9 159Google Scholar

    [29]

    Dufay B, Saez S, Dolabdjian C, Yelon A, Ménard D 2013 IEEE Trans. Magn. 49 85Google Scholar

    [30]

    Dufay B, Saez S, Dolabdjian C P, Yelon A, Ménard D 2011 IEEE Sens. J. 11 1317Google Scholar

    [31]

    Melo L G C, Ménard D, Yelon A, Ding L, Saez S, Dolabdjian C 2008 J. Appl. Phys. 103 033903Google Scholar

    [32]

    Traoré P S, Asfour A, Yonnet J P, Dolabdjian C P 2017 IEEE Sens. J. 17 6175Google Scholar

    [33]

    Traore P S, Asfour A, Yonnet J P 2021 Sens. Actuator A Phys. 331 112972Google Scholar

    [34]

    Jin F, Wang J C, Zhu L, Mo W Q, Dong K F, Song J L 2019 IEEE Sens. J. 19 9172Google Scholar

    [35]

    Fernández E, García-Arribas A, Barandiarán J M, Svalov A V, Kurlyandskaya G V, Dolabdjian C P 2015 IEEE Sens. J. 15 6707Google Scholar

    [36]

    Kim J Y, Cho I K, Lee H J, Lee J, Moon J I, Kim S M, Kim S W, Ahn S, Kim K 2020 IEEE Access 8 193091Google Scholar

  • [1] Li Xiang, Wang Jia-Wei, Li Fan, Huang Tian-Shi, Dang Hao, Zhao De-Sheng, Tian Long, Shi Shao-Ping, Li Wei, Yin Wang-Bao, Zheng Yao-Hui. Ultra-low-noise laser intensity noise evaluation system in Hz frequency band for ground-based gravitational wave detection. Acta Physica Sinica, doi: 10.7498/aps.74.20241319
    [2] Shang Xin, Li Fan, Ma Zheng-Lei, Huang Tian-Shi, Dang Hao, Li Wei, Yin Wang-Bao, Tian Long, Chen Li-Rong, Zheng Yao-Hui. Low noise photodetector in 0.1 mHz-1 Hz band. Acta Physica Sinica, doi: 10.7498/aps.74.20241635
    [3] WU Lielie, REN Yichong, Xue Fei. Ferromagnetic torsion pendulum oscillator based magnetic field measurement and its applications. Acta Physica Sinica, doi: 10.7498/aps.74.20241538
    [4] Tang Hai-Tao, Mi Zhuang, Wang Wen-Yu, Tang Xiang-Qian, Ye Xia, Shan Xin-Yan, Lu Xing-Hua. Low-noise preamplifier for scanning tunneling microscope. Acta Physica Sinica, doi: 10.7498/aps.73.20240560
    [5] Wang Jia-Wei, Li Jian-Bo, Li Fan, Zheng Li-Ang, Gao Zi-Chao, An Bing-Nan, Ma Zheng-Lei, Yin Wang-Bao, Tian Long, Zheng Yao-Hui. Programmable precision voltage reference source for space-based gravitational wave detection. Acta Physica Sinica, doi: 10.7498/aps.72.20222119
    [6] Cao Ruo-Lin, Peng Qing-Xuan, Wang Jin-Dong, Chen Yong-Jie, Huang Yun-Fei, Yu Ya-Fei, Wei Zheng-Jun, Zhang Zhi-Ming. Real-time polarization compensation system for wavelength division multiplexing in low noise fiber channel based on single photon counting feedback. Acta Physica Sinica, doi: 10.7498/aps.71.20220120
    [7] Wang Kai, Lin Bai-Ke, Song You-Jian, Meng Fei, Lin Yi-Ge, Cao Shi-Ying, Hu Ming-Lie, Fang Zhan-Jun. Low-noise microwave generation based on optical-microwave synchronization. Acta Physica Sinica, doi: 10.7498/aps.71.20211253
    [8] Low-noise microwave generation based on optical-microwave synchronization. Acta Physica Sinica, doi: 10.7498/aps.70.20211253
    [9] Shao Xiao-Dong, Han Hai-Nian, Wei Zhi-Yi. Ultra-low noise microwave frequency generation based on optical frequency comb. Acta Physica Sinica, doi: 10.7498/aps.70.20201925
    [10] Liu Lei, Xu Zhi-Bo, Qian Wen-Shuo, Li Wen-Jie, Xie Fang, Zhong Zhi, Shan Ming-Guang. Low-noise hierarchical phase unwrapping method for dual-wavelength digital holography using two synthetical wavelengths. Acta Physica Sinica, doi: 10.7498/aps.70.20210669
    [11] Han Hao-Xuan, Zhang Guo-Feng, Zhang Xue, Liang Tian-Tian, Ying Li-Liang, Wang Yong-Liang, Peng Wei, Wang Zhen. Design and fabrication of low-noise superconducting quantum interference device magnetometer. Acta Physica Sinica, doi: 10.7498/aps.68.20190483
    [12] Xie Tian-Yuan, Wang Ju, Wang Zi-Xiong, Ma Chuang, Yu Yang, Li Tian-Yu, Fang Jie, Yu Jin-Long. Long-range, high-precision absolute distance measurement technology based on alternately oscillating optoelectronic oscillator. Acta Physica Sinica, doi: 10.7498/aps.68.20190238
    [13] Guan Jia, Gu Yi-Sheng, Zhu Cheng-Jie, Yang Ya-Ping. Low-noise optical field phase-shifting manipulated using a coherently-prepared three-level atomic medium. Acta Physica Sinica, doi: 10.7498/aps.66.024205
    [14] Cao Jiang-Wei, Wang Rui, Wang Ying, Bai Jian-Min, Wei Fu-Lin. Measurement and study of low-frequency noise in TMR magnetic field sensor. Acta Physica Sinica, doi: 10.7498/aps.65.057501
    [15] Yang Bo, Bu Xiong-Zhu, Wang Xin-Zheng, Yu Jing. A time-difference fluxgate with Gauss noise and weak sinusoidal signal excitation. Acta Physica Sinica, doi: 10.7498/aps.63.200702
    [16] Yu Zhen-Tao, Lü Jun-Wei, Bi Bo, Zhou Jing. A vehicle magnetic noise compensation method for the tetrahedron magnetic gradiometer. Acta Physica Sinica, doi: 10.7498/aps.63.110702
    [17] Wang Wen-Bo, Wang Xiang-Li. Empirical mode decomposition pulsar signal denoising method based on predicting of noise mode cell. Acta Physica Sinica, doi: 10.7498/aps.62.209701
    [18] Liu Ming, Xu Xiao-Feng, Wang Yong-Liang, Zeng Jia, Li Hua, Qiu Yang, Zhang Shu-Lin, Zhang Guo-Feng, Kong Xiang-Yan, Xie Xiao-Ming. Study on transmission characteristics of matching transformer in DC superconducting quantum interference device readout. Acta Physica Sinica, doi: 10.7498/aps.62.188501
    [19] Wu Shao-Bing, Chen Shi, Li Hai, Yang Xiao-Fei. Researching progress of the 1/f noise in TMR and GMR sensors. Acta Physica Sinica, doi: 10.7498/aps.61.097504
    [20] Wang Jin-Dong, Lu Wei, Zhao Feng, Liu Xiao-Bao, Guo Bang-Hong, Zhang Jing, Huang Yu-Xian, Lu Yi-Qun, Liu Song-Hao. The experimental research on a stable free-space quantum key distribution system with low noise. Acta Physica Sinica, doi: 10.7498/aps.57.4214
Metrics
  • Abstract views:  263
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  25 October 2024
  • Accepted Date:  05 December 2024
  • Available Online:  11 December 2024

/

返回文章
返回