Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Long-range, high-precision absolute distance measurement technology based on alternately oscillating optoelectronic oscillator

Xie Tian-Yuan Wang Ju Wang Zi-Xiong Ma Chuang Yu Yang Li Tian-Yu Fang Jie Yu Jin-Long

Citation:

Long-range, high-precision absolute distance measurement technology based on alternately oscillating optoelectronic oscillator

Xie Tian-Yuan, Wang Ju, Wang Zi-Xiong, Ma Chuang, Yu Yang, Li Tian-Yu, Fang Jie, Yu Jin-Long
cstr: 32037.14.aps.68.20190238
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Absolute distance measurement plays an important role in many areas, such as aerospace and scientific research. Traditional measurement methods generally cannot meet requirements for long-range and high-precision at the same time. In this paper, an absolute distance measurement method based on alternately oscillating optoelectronic oscillator is proposed. This method places the distance to be measured in the loop of optoelectronic oscillator and takes advantage of accumulative magnification effect to achieve high accuracy. The measurement and the reference optoelectronic oscillators are established and selected by an optical switch, and a microwave switch is used to choose the high-order or low-order oscillating frequency. The high-order frequency and low-order oscillating frequency of the measurement and reference optoelectronic oscillators are measured in turn by frequency counter to calculate the loop lengths of two optoelectronic oscillators. The low-order frequencies are used to measure the fundamental frequency roughly and the high-order frequencies are used to calculate loop length precisely. Although the mode hopping occurs in the measurement process, it does not affect the loop length calculation by substituting the corresponding oscillating mode number. Note that the loop length measurement moments of two optoelectronic oscillators are different due to the switching order of optical switch and microwave switch. In order to calculate the absolute distance, which is the length difference between two optoelectronic oscillators at the same moment, the measured loop lengths should be averaged.In this way, systematic error accumulation caused by slow drift of environment can be eliminated, and this method does not need to control the length of reference optoelectronic oscillator. Meanwhile, the measurement system is simple. In the experiment, 1 km, 5 km and 8 km fibers are placed in a common part of the measurement and reference optoelectronic oscillators to simulate different long-range distances in space. A high-resolution optical delay line is placed in the measurement optoelectronic oscillator to verify the performance of the measurement system. The experimental results show that the measurement error is 3.5 μm with a 3.5 μm maximum standard deviation of each measurement distance at an emulated round trip distance of 6 km. The relative measurement accuracy reaches 5.8 × 10-10. This method provides a feasible idea for solving the technical problems of long-range and high-precision absolute distance measurement.
      Corresponding author: Wang Ju, wangju@tju.edu.cn
    • Funds: Project supported by the Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China (Grant No. 61427817), and the National Natural Science Foundation of China (Grant Nos. 61775162, 61601321).
    [1]

    Estler W T, Edmundson K L, Peggs G N, Parker D H 2002 CIRP Ann. 51 587Google Scholar

    [2]

    Tapley B D, Bettadpur S, Ries J C, Thompson P F, Watkins M M 2004 Science 305 503Google Scholar

    [3]

    Kim J, Lee S W 2009 Acta Astronaut. 65 1571Google Scholar

    [4]

    Dickey J O, Bender P L, Faller J E, Newhall X X, Ricklefs R L, Ries J G, Shelus P J, Veillet C, Whipple A L, Wiant J R, Willams J G, Yoder C F 1994 Science 265 482Google Scholar

    [5]

    Falaggis K, Towers D P, Towers C E 2009 Opt. Lett. 34 950Google Scholar

    [6]

    Yang H J, Deibel J, Nyberg S, Riles K 2005 Appl. Opt. 44 3937Google Scholar

    [7]

    Abouzeid A, Pollinger F, Meinershagen K, Wedde M 2009 Appl. Opt. 48 6188Google Scholar

    [8]

    黑克非, 于晋龙, 王菊, 王文睿, 贾石, 吴穹, 薛纪强 2014 物理学报 63 100602Google Scholar

    Hei K F, Yu J L, Wang J, Wang W R, Jia S, Wu Q, Xue J Q 2014 Acta Phys. Sin. 63 100602Google Scholar

    [9]

    Ye J 2004 Opt. Lett. 29 1153Google Scholar

    [10]

    Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photon. 4 716Google Scholar

    [11]

    Lee J, Lee K, Lee S, Kim S W, Kim Y J 2012 Meas. Sci. Technol. 23 065203Google Scholar

    [12]

    Wang G, Jang Y S, Hyun S, Chun B J, Kang H J, Yan S 2015 Opt. Express 23 9121Google Scholar

    [13]

    Zhu Z B, Xu G Y, Ni K, Zhou Q, Wu G H 2018 Opt. Express 26 5747Google Scholar

    [14]

    Zhang S H, Xu Z Y, Chen B Y, Yan L P, Xie J D 2018 Opt. Express 26 9273Google Scholar

    [15]

    Wang J, Yu J L, Miao W, Sun B, Jia S, Wang W R, Wu Q 2014 Opt. Lett. 39 4412Google Scholar

    [16]

    Chen B, Yu J L, Wang J, Li T Y, Wang W R, Yu Y, Xie T Y 2016 Chin. Opt. Lett. 14 110608Google Scholar

    [17]

    Yao X S, Maleki L 1996 J. Opt. Soc. Am. B 13 1725Google Scholar

    [18]

    贾石, 于晋龙, 王菊, 王文睿, 王子雄, 陈斌 2015 物理学报 64 154204Google Scholar

    Jia S, Yu J L, Wang J, Wang W R, Wang Z X, Chen B 2015 Acta Phys. Sin. 64 154204Google Scholar

  • 图 1  基于交替起振光电振荡器绝对距离测量的基本结构 (a)光开关处于交叉状态, 测量环振荡; (b)光开关处于平行状态, 参考环振荡

    Figure 1.  Basic structure of absolute distance measurement method based on alternately oscillating OEO: (a) The measurement loop oscillates with optical switch at cross state; (b) the reference loop oscillates with optical switch at parallel state.

    图 2  距离测量过程 (a)光开关、微波开关切换时刻及相应的频率测量; (b) OEO1和OEO2的腔长测量及绝对距离测量

    Figure 2.  Distance measurement process: (a) The switching moments of optical switch and microwave switch and corresponding frequency measurement process; (b) loop length measurement of OEO1, OEO2 and the absolute distance measurement.

    图 3  开关切换及频率计计数时序图

    Figure 3.  The switching time and frequency counting timing diagram.

    图 4  测量/参考环振荡信号的频谱图 (a)高阶模式起振; (b)低阶模式起振

    Figure 4.  RF spectrum of oscillating frequencies of measurement/reference loop: (a) With OEO oscillating at high-order mode; (b) with OEO oscillating at low-order mode.

    图 5  长光纤为5 km光延时线在0 mm位置时的测量结果 (a) OEO1和OEO2起振频率测量值; (b) OEO1和OEO2的腔长及待测距离测量结果

    Figure 5.  Measurement results at 0 mm position of optical delay line with 5 km fiber: (a) Oscillating frequencies of OEO1 and OEO2; (b) loop lengths of OEO1 and OEO2, and distance measurement results.

    图 6  长光纤为5 km时测量距离与光延时线位移距离的关系

    Figure 6.  The relationship between measured distance and position variation of optical delay line with 5 km fiber.

    图 7  测量距离与光延时线位移距离的关系 (a) 1 km长光纤; (b) 8 km长光纤

    Figure 7.  The relationship between measured distance and position variation of optical delay line: (a) With 1 km fiber; (b) with 8 km fiber.

  • [1]

    Estler W T, Edmundson K L, Peggs G N, Parker D H 2002 CIRP Ann. 51 587Google Scholar

    [2]

    Tapley B D, Bettadpur S, Ries J C, Thompson P F, Watkins M M 2004 Science 305 503Google Scholar

    [3]

    Kim J, Lee S W 2009 Acta Astronaut. 65 1571Google Scholar

    [4]

    Dickey J O, Bender P L, Faller J E, Newhall X X, Ricklefs R L, Ries J G, Shelus P J, Veillet C, Whipple A L, Wiant J R, Willams J G, Yoder C F 1994 Science 265 482Google Scholar

    [5]

    Falaggis K, Towers D P, Towers C E 2009 Opt. Lett. 34 950Google Scholar

    [6]

    Yang H J, Deibel J, Nyberg S, Riles K 2005 Appl. Opt. 44 3937Google Scholar

    [7]

    Abouzeid A, Pollinger F, Meinershagen K, Wedde M 2009 Appl. Opt. 48 6188Google Scholar

    [8]

    黑克非, 于晋龙, 王菊, 王文睿, 贾石, 吴穹, 薛纪强 2014 物理学报 63 100602Google Scholar

    Hei K F, Yu J L, Wang J, Wang W R, Jia S, Wu Q, Xue J Q 2014 Acta Phys. Sin. 63 100602Google Scholar

    [9]

    Ye J 2004 Opt. Lett. 29 1153Google Scholar

    [10]

    Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photon. 4 716Google Scholar

    [11]

    Lee J, Lee K, Lee S, Kim S W, Kim Y J 2012 Meas. Sci. Technol. 23 065203Google Scholar

    [12]

    Wang G, Jang Y S, Hyun S, Chun B J, Kang H J, Yan S 2015 Opt. Express 23 9121Google Scholar

    [13]

    Zhu Z B, Xu G Y, Ni K, Zhou Q, Wu G H 2018 Opt. Express 26 5747Google Scholar

    [14]

    Zhang S H, Xu Z Y, Chen B Y, Yan L P, Xie J D 2018 Opt. Express 26 9273Google Scholar

    [15]

    Wang J, Yu J L, Miao W, Sun B, Jia S, Wang W R, Wu Q 2014 Opt. Lett. 39 4412Google Scholar

    [16]

    Chen B, Yu J L, Wang J, Li T Y, Wang W R, Yu Y, Xie T Y 2016 Chin. Opt. Lett. 14 110608Google Scholar

    [17]

    Yao X S, Maleki L 1996 J. Opt. Soc. Am. B 13 1725Google Scholar

    [18]

    贾石, 于晋龙, 王菊, 王文睿, 王子雄, 陈斌 2015 物理学报 64 154204Google Scholar

    Jia S, Yu J L, Wang J, Wang W R, Wang Z X, Chen B 2015 Acta Phys. Sin. 64 154204Google Scholar

Metrics
  • Abstract views:  13419
  • PDF Downloads:  123
  • Cited By: 0
Publishing process
  • Received Date:  25 February 2019
  • Accepted Date:  30 April 2019
  • Available Online:  01 July 2019
  • Published Online:  05 July 2019
  • /

    返回文章
    返回