搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双环混频光电振荡器的可调谐微波频率梳产生

麻艳娜 黄添添 王文睿 宋开臣

引用本文:
Citation:

基于双环混频光电振荡器的可调谐微波频率梳产生

麻艳娜, 黄添添, 王文睿, 宋开臣

Tunable microwave frequency comb generation based on double-loop mixing-frequency optoelectronic oscillator

Ma Yan-Na, Huang Tian-Tian, Wang Wen-Rui, Song Kai-Chen
PDF
导出引用
  • 随着无线通信的速率提升和微蜂窝趋势,光载微波技术已经成为重要的发展趋势,而光生多载波系统是光载微波的最重要的技术之一.本文提出了一种基于双环混频光电振荡器(OEO)的可调谐光载微波频率梳产生方案,可同时实现多频段微波信号产生,从而高效低成本地为无线节点提供光生微波载波.方案采用混频双环OEO系统,通过工作在增益开关状态的直调激光器,利用其非线性动态特性产生多频率光载微波频率梳信号,并采用双路微波滤波器分别滤出两个相邻频率的微波信号,并利用二者的差频反馈注入直调激光器构成光电谐振.利用偏振双环结构抑制长谐振腔引起的边模问题,提高了输出信号的噪声特性.经过实验分析,得到了低相噪的多路微波信号,并最终实现了间隔797.4 MHz的稳定的微波频率梳信号,一阶载波相位噪声低于-101.7 dBc/Hz@10 kHz,-115.2 dBc/Hz@50 kHz.因此该方案产生的光载微波频率梳信号具有低噪声的优点,适用于光载微波通信系统.
    With the development of wireless communication technology and micro-cell technology, optical-borne microwave technology, specially optical-borne multi-carrier technology has become one of the most important trends for generating high-quality sources. Therefore, the efficient generation of high-quality microwave signals has always been a requirement in wireless communication systems. Due to its low-noise and high-frequency output characteristics, photoelectric oscillator is widely used to generate high-quality microwave frequency sources in communication systems. Combining the advantages of photoelectric oscillator's low-noise output and direct-modulated laser's gain-switching state characteristics, a tunable optical-borne microwave frequency comb scheme based on dual-loop mixing-frequency photoelectric oscillator is proposed in this paper. And a direct-modulated laser operating in a gain-switching state is used to generate the original optical-borne microwave frequency comb signals. The dual-loop adjacent resonant frequencies are separated by two different high-frequency microwave bandpass filters. The beat frequency of adjacent frequencies mentioned above is injected back into laser to form photoelectric resonance, and thus enhancing the generated original optical-borne microwave frequency comb signals. To suppress the side modes caused by long resonant cavity, a polarized dual-loop structure is used in the system, and thus improving the noise characteristics of output signals. After experimental analysis, the dual-loop filtered resonant microwave signals and low-phase-noise microwave comb signals with a frequency interval of 797.4 MHz are all obtained. The microwave output side-mode suppression ratio after polarized dual-loop adjustment is improved to 47 dB. And microwave comb signal's first-order carrier phase noise is lower than-101.7 dBc/Hz at 10 kHz,-115.2 dBc/Hz at 50 kHz. In addition, higher-order carriers all come from the light multiplication of first-order carrier, they share the same low noise characteristics with first-order microwave comb signal. The output power of first-to-fourth, fifth-to-thirteenth order carriers are balanced to 10 dB by photoelectric resonance injection. And their side-mode suppression ratios are all better than 40 dB. Furthermore, theoretically, the comb interval can be adjusted to any frequencies by changing the center frequencies of two high-frequency bandpass microwave filters. Therefore, optical-borne multi-carrier microwave signals are generated efficiently and cost-effectively by this tunable optical-borne microwave frequency comb scheme, and the generated low-noise multi-carrier frequency sources meet the demand of an optical-borne microwave wireless communication system.
    • 基金项目: 国家自然科学基金(批准号:61675182)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61675182).
    [1]

    Ma J, Li Y 2015 Opt. Commun. 334 22

    [2]

    Li C Y, Su H S, Chang C H, Lu H H, Wu P Y, Chen C Y, Ying C L 2012 J. Lightwave Technol. 30 298

    [3]

    Zhang L, Hu X, Cao P, Wang T, Su Y 2011 Opt. Express 19 5196

    [4]

    Chowdhury A, Chan G K, Chien H C, Yu J, Hsueh Y T 2010 J. Lightwave Technol. 28 2230

    [5]

    Hagmann M J, Efimov A, Taylor A J, Yarotski D A 2011 Appl. Phys. Lett. 99 011112

    [6]

    Hagmann M J, Taylor A J, Yarotski D A 2012 Appl. Phys. Lett. 101 241102

    [7]

    Hagmann M J, Stenger F S, Yarotski D A 2013 J. Appl. Phys. 114 223107

    [8]

    Weiner A M, Long C M, Leaird D E, Wu R, Supradeepa V R 2010 Opt. Lett. 35 3234

    [9]

    Wong J H, Lam H Q, Aditya S, Zhou J Q, Li N X, Xue J, Lim P H, Lee K K, Wu K, Shum P P 2012 J. Lightwave Technol. 30 3164

    [10]

    Shang L, Wen A, Lin G B 2014 J. Opt. 16 035401

    [11]

    Wang W T, Liu J G, Sun W H, Chen W 2015 Opt. Commun. 338 90

    [12]

    Chan S C, Xia G Q, Liu J M 2007 Opt. Lett. 32 1917

    [13]

    Juan Y S, Lin F Y 2009 Opt. Express 17 18596

    [14]

    Fan L, Xia G Q, Tang X, Deng T, Chen J J, Lin X D, Li Y N, Wu Z M 2017 IEEE Access 5 17764

    [15]

    Jiang Y, Bai G, Hu L, Li H, Zhou Z, Xu J, Wang S 2013 IEEE Photonic Tech. L. 25 382

    [16]

    Izutsu M, Sakamoto T, Kawanishi T 2006 Opt. Lett. 31 811

    [17]

    Buldu J M, Garcia-Ojalvo J, Torrent M C 2004 IEEE J. Quantum. Elect. 40 640

    [18]

    Jiang Y, Zi Y J, Bai G F, Tian J 2018 Opt. Lett. 43 1774

  • [1]

    Ma J, Li Y 2015 Opt. Commun. 334 22

    [2]

    Li C Y, Su H S, Chang C H, Lu H H, Wu P Y, Chen C Y, Ying C L 2012 J. Lightwave Technol. 30 298

    [3]

    Zhang L, Hu X, Cao P, Wang T, Su Y 2011 Opt. Express 19 5196

    [4]

    Chowdhury A, Chan G K, Chien H C, Yu J, Hsueh Y T 2010 J. Lightwave Technol. 28 2230

    [5]

    Hagmann M J, Efimov A, Taylor A J, Yarotski D A 2011 Appl. Phys. Lett. 99 011112

    [6]

    Hagmann M J, Taylor A J, Yarotski D A 2012 Appl. Phys. Lett. 101 241102

    [7]

    Hagmann M J, Stenger F S, Yarotski D A 2013 J. Appl. Phys. 114 223107

    [8]

    Weiner A M, Long C M, Leaird D E, Wu R, Supradeepa V R 2010 Opt. Lett. 35 3234

    [9]

    Wong J H, Lam H Q, Aditya S, Zhou J Q, Li N X, Xue J, Lim P H, Lee K K, Wu K, Shum P P 2012 J. Lightwave Technol. 30 3164

    [10]

    Shang L, Wen A, Lin G B 2014 J. Opt. 16 035401

    [11]

    Wang W T, Liu J G, Sun W H, Chen W 2015 Opt. Commun. 338 90

    [12]

    Chan S C, Xia G Q, Liu J M 2007 Opt. Lett. 32 1917

    [13]

    Juan Y S, Lin F Y 2009 Opt. Express 17 18596

    [14]

    Fan L, Xia G Q, Tang X, Deng T, Chen J J, Lin X D, Li Y N, Wu Z M 2017 IEEE Access 5 17764

    [15]

    Jiang Y, Bai G, Hu L, Li H, Zhou Z, Xu J, Wang S 2013 IEEE Photonic Tech. L. 25 382

    [16]

    Izutsu M, Sakamoto T, Kawanishi T 2006 Opt. Lett. 31 811

    [17]

    Buldu J M, Garcia-Ojalvo J, Torrent M C 2004 IEEE J. Quantum. Elect. 40 640

    [18]

    Jiang Y, Zi Y J, Bai G F, Tian J 2018 Opt. Lett. 43 1774

  • [1] 姚晓岱, 吴爽, 赵锐, 吴淼鑫, 刘航, 金光勇, 于永吉. 基于台阶声光调Q外腔泵浦MgO:PPLN光参量振荡器的3.4 μm中红外脉冲串激光器. 物理学报, 2024, 73(4): 044206. doi: 10.7498/aps.73.20231348
    [2] 段延敏, 周玉明, 孙瑛璐, 李志红, 张耀举, 王鸿雁, 朱海永. 声光调Q Nd:YVO4晶体级联拉曼倍频窄脉宽657 nm激光器. 物理学报, 2021, 70(22): 224209. doi: 10.7498/aps.70.20210695
    [3] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [4] 谢田元, 王菊, 王子雄, 马闯, 于洋, 李天宇, 方杰, 于晋龙. 基于交替起振光电振荡器的大量程高精度绝对距离测量技术. 物理学报, 2019, 68(13): 130601. doi: 10.7498/aps.68.20190238
    [5] 黄港膑, 王菊, 王文睿, 贾石, 于晋龙. 一种基于串联谐振腔的高性能光电振荡器. 物理学报, 2016, 65(4): 044204. doi: 10.7498/aps.65.044204
    [6] 葛烨, 胡以华, 舒嵘, 洪光烈. 一种新型的用于差分吸收激光雷达中脉冲式光学参量振荡器的种子激光器的频率稳定方法. 物理学报, 2015, 64(2): 020702. doi: 10.7498/aps.64.020702
    [7] 吴穹, 于晋龙, 王菊, 王文睿, 贾石, 黄港膑, 黑克非, 李丽娟. 一种基于微波谐振测量Sagnac效应的新方案. 物理学报, 2015, 64(4): 044205. doi: 10.7498/aps.64.044205
    [8] 贾石, 于晋龙, 王菊, 王子雄, 陈斌. 重复频率可调谐的超低抖动光窄脉冲源的研究. 物理学报, 2015, 64(18): 184201. doi: 10.7498/aps.64.184201
    [9] 贾石, 于晋龙, 王菊, 王文睿, 王子雄, 陈斌. 基于波长双环路结构的新型光电振荡器的研究. 物理学报, 2015, 64(15): 154204. doi: 10.7498/aps.64.154204
    [10] 李红霞, 江阳, 白光富, 单媛媛, 梁建惠, 马闯, 贾振蓉, 訾月姣. 有源环形谐振腔辅助滤波的单模光电振荡器. 物理学报, 2015, 64(4): 044202. doi: 10.7498/aps.64.044202
    [11] 李凯, 王安帮, 赵彤, 王云才. 光电振荡器产生宽带混沌光的时延特征分析. 物理学报, 2013, 62(14): 144207. doi: 10.7498/aps.62.144207
    [12] 吴学健, 尉昊赟, 朱敏昊, 张继涛, 李岩. 基于飞秒光频梳的双频He-Ne激光器频率测量. 物理学报, 2012, 61(18): 180601. doi: 10.7498/aps.61.180601
    [13] 任广军, 魏臻, 姚建铨. 调Q脉冲保偏光纤激光器的研究. 物理学报, 2009, 58(2): 941-945. doi: 10.7498/aps.58.941
    [14] 宗楠, 崔大复, 李成明, 彭钦军, 许祖彦, 秦莉, 李特, 宁永强, 晏长岭, 王立军. 光抽运垂直扩展腔面发射激光器腔内倍频理论研究. 物理学报, 2009, 58(6): 3903-3908. doi: 10.7498/aps.58.3903
    [15] 黄琳, 代志勇, 刘永智. 不同脉冲重复频率下抽运方式对全光纤声光调Q激光器性能的影响. 物理学报, 2009, 58(10): 6992-6999. doi: 10.7498/aps.58.6992
    [16] 赵益波, 罗晓曙. 基于Washout滤波器技术的Colpitts振荡器混沌控制研究. 物理学报, 2007, 56(11): 6258-6262. doi: 10.7498/aps.56.6258
    [17] 邓诚先, 李正佳, 朱长虹. 具有腔内光放大的单共振光参量振荡器. 物理学报, 2005, 54(10): 4754-4760. doi: 10.7498/aps.54.4754
    [18] 李正红, 孟凡宝, 常安碧, 黄 华, 马乔生. 两腔高功率微波振荡器研究. 物理学报, 2005, 54(8): 3578-3583. doi: 10.7498/aps.54.3578
    [19] 庄军, 谭维翰. 光折变振荡器中的模式巡游现象. 物理学报, 1996, 45(10): 1660-1670. doi: 10.7498/aps.45.1660
    [20] 许鹏飞, 冯秉铨. 电子耦合振荡器之频率稳定性. 物理学报, 1950, 7(6): 72-80. doi: 10.7498/aps.7.72-2
计量
  • 文章访问数:  6753
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-23
  • 修回日期:  2018-09-30
  • 刊出日期:  2018-12-05

/

返回文章
返回