Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthetic-wavelength based absolute distance measurement using heterodyne interferometry of a femtosecond laser

Liao Lei Yi Wang-Min Yang Zai-Hua Wu Guan-Hao

Citation:

Synthetic-wavelength based absolute distance measurement using heterodyne interferometry of a femtosecond laser

Liao Lei, Yi Wang-Min, Yang Zai-Hua, Wu Guan-Hao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Large-scale and high precision absolute distance measurement is essential in aerospace technology and advanced manufacturing. Traditional method of measuring distance cannot meet this requirement. Since the advent of optical frequency comb, it has brought a revolutionary breakthrough to absolute distance measurement. In the past decade, there were proposed many methods to measure long absolute distances with high accuracy. Especially, the simple method of using adjacent pulse-to-pulse distance as a ruler for distance measurement has been widely used. The accuracy of this method depends mainly on the knowledge of relative positions of the two overlapped pulses, i.e., pulse-to-pulse alignment. In our previous study, we have proposed a heterodyne interferometer based on synthetic wavelength method with femtosecond laser. The synthetic wavelength is derived from the virtual second harmonic and the real second harmonic, and the real second harmonic is produced by a piece of periodically poled LiNbO3 (PPLN) crystal. However, the second harmonic generation system makes the system complicated, and causes a great optical energy loss. In order to solve this problem, we generate the synthetic wavelength by two spatial band-pass filters in our present study, which can simplify the system greatly. Moreover, we can reduce the optical energy loss and tune the synthetic wavelength by controlling the angle of the filter. The synthetic wavelength used in the present system is 71.39 m. The interferometric phase of the synthetic wavelength is used as a mark for the pulse-to-pulse alignment. In order to reduce the influences of air disturbance and temperature variation, we set up a thermal-insulated cover for the interferometer to stabilize the environment in the system. By using this cover, the optical path length difference of the system in 450 s can be reduced from 8.56 m to 0.21 m. To demonstrate the efficacy of the method described above, the target mirror is moved by eight steps in steps of 5 mm. We compare the measurement results with those obtained by a commercial interferometer, and the residual error is less than 100 nm. Since the measurement range is larger than our previous study, the relative accuracy is better than the previous system. In conclusion, we demonstrate a synthetic-wavelength based absolute distance measurement by using heterodyne interferometry of a femtosecond laser. Two spatial band-pass filters are used to generate the synthetic wavelength, which can simplify the system. The comparison results show that the system has an accuracy better than 100 nm in a displacement of 40 mm. The accuracy of the experimental system can be further improved by making the common-path of the two interferometers longer, locking the fceo to the atomic clock and sampling the data synchronously.
      Corresponding author: Wu Guan-Hao, guanhaowu@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61575105), Tsinghua University Initiative Scientific Research Program, China (Grant No. 20151080460), the Foundation of the Laboratory of High-accuracy Measurement of Spacecraft, and the Funding of State Key Laboratory of Transient Optics and Photonics, China (Grant No. SKLST201406).
    [1]

    Huang B, Feng M, Chen X D, et al. 2009 Laser J. 30 16 (in Chinese) [黄保, 冯鸣, 陈新东等 2009 激光杂志 30 16]

    [2]

    Cao S Y, Meng F, Lin B K, Fang Z J, Li T C 2012 Acta Phys. Sin. 61 134205 (in Chinese) [曹士英, 孟飞, 林百科, 方占军, 李天初 2012 物理学报 61 134205]

    [3]

    Ye J 2004 Opt. Lett. 29 1153

    [4]

    Cui M, Schouten R N, Bhattacharya N, Berg S A 2008 J. Eur. Opt. Soc. -Rapid 3 08003

    [5]

    Balling P, Kren P, Masika P, van den Berg S A 2009 Opt. Express 17 9300

    [6]

    Cui M, Zeitouny M G, van den Berg S A, Urbach H P, Braat J J M 2009 Opt. Lett. 34 1982

    [7]

    Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photonics 4 716

    [8]

    Lee J, Lee K, Lee S, Kim S, Kim Y 2012 Meas. Sci. Technol. 23 65203

    [9]

    Schuhler N, Salvade Y, Leveque S, Dandliker R, Holzwarth R 2006 Opt. Lett. 31 3101

    [10]

    Doloca N R, Meiners-Hagen K, Wedde M, Pollinger F, Abou-Zeid A 2010 Meas. Sci. Technol. 21 115302

    [11]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512

    [12]

    Hyun S, Kim Y, Kim Y, Jin J, Kim S 2009 Meas. Sci. Technol. 20 95302

    [13]

    van den Berg S A, Persijn S T, Kok G, Zeitouny M G, Bhattacharya N 2012 Phys. Rev. Lett. 108 183901

    [14]

    Joo K, Kim S 2006 Opt. Express 14 5954

    [15]

    Joo K, Kim S 2008 Opt. Express 16 19799

    [16]

    Xia H, Zhang C 2010 Opt. Express 18 4118

    [17]

    Wu H Z, Cao S Y, Zhang F M, Qu X H 2015 Acta Phys. Sin. 64 020601 (in Chinese) [吴翰钟, 曹士英, 张福民, 曲兴华 2015 物理学报 64 020601]

    [18]

    Liu T Y, Zhang F M, Wu H Z, Li J S, Shi Y Q, Qu X H 2016 Acta Phys. Sin. 65 020601 (in Chinese) [刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华 2016 物理学报 65 020601]

    [19]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photonics 3 351

    [20]

    Liu T, Newbury N R, Coddington I 2011 Opt. Express 19 18501

    [21]

    Lee J, Han S, Lee K, Kim E, Bae S, Lee S, Kim S, Kim Y 2013 Meas. Sci. Technol. 24 45201

    [22]

    Wu G, Zhou Q, Shen L, Ni K, Zeng X, Li Y 2014 Appl. Phys. Express 24 106602

    [23]

    Wu G, Xiong S, Ni K, Zhu Z, Zhou Q 2015 Opt. Express 23 32044

    [24]

    Wu G, Takahashi M, Inaba H, Minoshima K 2013 Opt. Lett. 38 2140

    [25]

    Wu G, Arai K, Takahashi M, Inaba H, Minoshima K 2013 Meas. Sci. Technol. 24 15203

    [26]

    Wu G, Takahashi M, Arai K, Inaba H, Minoshima K 2013 Sci. Rep. 3 1894

    [27]

    Edln B 1966 Metrologia 2 71

    [28]

    Bnsch G, Potulski E 1998 Metrologia 35 133

    [29]

    Falaggis K, Towers D P, Towers C E M 2012 Appl. Opt. 51 6471

  • [1]

    Huang B, Feng M, Chen X D, et al. 2009 Laser J. 30 16 (in Chinese) [黄保, 冯鸣, 陈新东等 2009 激光杂志 30 16]

    [2]

    Cao S Y, Meng F, Lin B K, Fang Z J, Li T C 2012 Acta Phys. Sin. 61 134205 (in Chinese) [曹士英, 孟飞, 林百科, 方占军, 李天初 2012 物理学报 61 134205]

    [3]

    Ye J 2004 Opt. Lett. 29 1153

    [4]

    Cui M, Schouten R N, Bhattacharya N, Berg S A 2008 J. Eur. Opt. Soc. -Rapid 3 08003

    [5]

    Balling P, Kren P, Masika P, van den Berg S A 2009 Opt. Express 17 9300

    [6]

    Cui M, Zeitouny M G, van den Berg S A, Urbach H P, Braat J J M 2009 Opt. Lett. 34 1982

    [7]

    Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photonics 4 716

    [8]

    Lee J, Lee K, Lee S, Kim S, Kim Y 2012 Meas. Sci. Technol. 23 65203

    [9]

    Schuhler N, Salvade Y, Leveque S, Dandliker R, Holzwarth R 2006 Opt. Lett. 31 3101

    [10]

    Doloca N R, Meiners-Hagen K, Wedde M, Pollinger F, Abou-Zeid A 2010 Meas. Sci. Technol. 21 115302

    [11]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512

    [12]

    Hyun S, Kim Y, Kim Y, Jin J, Kim S 2009 Meas. Sci. Technol. 20 95302

    [13]

    van den Berg S A, Persijn S T, Kok G, Zeitouny M G, Bhattacharya N 2012 Phys. Rev. Lett. 108 183901

    [14]

    Joo K, Kim S 2006 Opt. Express 14 5954

    [15]

    Joo K, Kim S 2008 Opt. Express 16 19799

    [16]

    Xia H, Zhang C 2010 Opt. Express 18 4118

    [17]

    Wu H Z, Cao S Y, Zhang F M, Qu X H 2015 Acta Phys. Sin. 64 020601 (in Chinese) [吴翰钟, 曹士英, 张福民, 曲兴华 2015 物理学报 64 020601]

    [18]

    Liu T Y, Zhang F M, Wu H Z, Li J S, Shi Y Q, Qu X H 2016 Acta Phys. Sin. 65 020601 (in Chinese) [刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华 2016 物理学报 65 020601]

    [19]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photonics 3 351

    [20]

    Liu T, Newbury N R, Coddington I 2011 Opt. Express 19 18501

    [21]

    Lee J, Han S, Lee K, Kim E, Bae S, Lee S, Kim S, Kim Y 2013 Meas. Sci. Technol. 24 45201

    [22]

    Wu G, Zhou Q, Shen L, Ni K, Zeng X, Li Y 2014 Appl. Phys. Express 24 106602

    [23]

    Wu G, Xiong S, Ni K, Zhu Z, Zhou Q 2015 Opt. Express 23 32044

    [24]

    Wu G, Takahashi M, Inaba H, Minoshima K 2013 Opt. Lett. 38 2140

    [25]

    Wu G, Arai K, Takahashi M, Inaba H, Minoshima K 2013 Meas. Sci. Technol. 24 15203

    [26]

    Wu G, Takahashi M, Arai K, Inaba H, Minoshima K 2013 Sci. Rep. 3 1894

    [27]

    Edln B 1966 Metrologia 2 71

    [28]

    Bnsch G, Potulski E 1998 Metrologia 35 133

    [29]

    Falaggis K, Towers D P, Towers C E M 2012 Appl. Opt. 51 6471

  • [1] Ma Bo-Wen, Dai Wen, Meng Fei, Tao Jia-Ning, Wu Zi-Ling, Shi Yan-Qing, Fang Zhan-Jun, Hu Ming-Lie, Song You-Jian. Using asynchronous optical sampling to measure timing jitter of electro-optic frequency combs. Acta Physica Sinica, 2024, 73(14): 144203. doi: 10.7498/aps.73.20240400
    [2] Liang Xu, Lin Jia-Rui, Wu Teng-Fei, Zhao Hui, Zhu Ji-Gui. Absolute distance measurement using cross correlation interferometer with a repetition rate multiplication frequency comb. Acta Physica Sinica, 2022, 71(9): 090602. doi: 10.7498/aps.71.20212073
    [3] Wang Guo-Chao, Li Xing-Hui, Yan Shu-Hua, Tan Li-Long, Guan Wen-Liang. Real-time absolute distance measurement by multi-wavelength interferometry synchronously multi-channel phase-locked to frequency comb and analysis for the potential non-ambiguity range. Acta Physica Sinica, 2021, 70(4): 040601. doi: 10.7498/aps.70.20201225
    [4] Xu Xin-Yang, Zhao Hai-Han, Qian Zhi-Wen, Liu Chao, Zhai Jing-Sheng, Wu Han-Zhong. Rapid absolute distance measurement by dynamic chirped pulse interferometry. Acta Physica Sinica, 2021, 70(22): 220601. doi: 10.7498/aps.70.20202149
    [5] Zhao Xian-Yu, Qu Xing-Hua, Chen Jia-Wei, Zheng Ji-Hui, Wang Jin-Dong, Zhang Fu-Min. Method of measuring absolute distance based on spectral interferometry using an electro-optic comb. Acta Physica Sinica, 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [6] Kong Xin-Xin, Zhang Wen-Xi, Cai Qi-Sheng, Wu Zhou, Dai Yu, Xiang Li-Bin. Multi beam hybrid heterodyne interferometry based phase enhancement technology. Acta Physica Sinica, 2020, 69(19): 190601. doi: 10.7498/aps.69.20200281
    [7] Xie Tian-Yuan, Wang Ju, Wang Zi-Xiong, Ma Chuang, Yu Yang, Li Tian-Yu, Fang Jie, Yu Jin-Long. Long-range, high-precision absolute distance measurement technology based on alternately oscillating optoelectronic oscillator. Acta Physica Sinica, 2019, 68(13): 130601. doi: 10.7498/aps.68.20190238
    [8] Zhou Kang, Li Hua, Wan Wen-Jian, Li Zi-Ping, Cao Jun-Cheng. Group velocity dispersion analysis of terahertz quantum cascade laser frequency comb. Acta Physica Sinica, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [9] Chen Jia-Wei, Wang Jin-Dong, Qu Xing-Hua, Zhang Fu-Min. Analysis of main parameters of spectral interferometry ranging using optical frequency comb and animproved data processing method. Acta Physica Sinica, 2019, 68(19): 190602. doi: 10.7498/aps.68.20190836
    [10] Ding Wu-Wen, Sun Li-Qun. Phase sensitive chirped laser dispersion spectroscopy under high absorbance conditions. Acta Physica Sinica, 2017, 66(12): 120601. doi: 10.7498/aps.66.120601
    [11] Sun Qing, Yang Yi, Deng Yu-Qiang, Meng Fei, Zhao Kun. High-precision measurement of terahertz frequency using an unstabilized femtosecond laser. Acta Physica Sinica, 2016, 65(15): 150601. doi: 10.7498/aps.65.150601
    [12] Liu Ting-Yang, Zhang Fu-Min, Wu Han-Zhong, Li Jian-Shuang, Shi Yong-Qiang, Qu Xing-Hua. Absolute distance ranging by means of chirped pulse interferometry. Acta Physica Sinica, 2016, 65(2): 020601. doi: 10.7498/aps.65.020601
    [13] Liu Huan, Cao Shi-Ying, Meng Fei, Lin Bai-Ke, Fang Zhan-Jun. Er-fiber femtosecond optical frequency comb covering visible light. Acta Physica Sinica, 2015, 64(9): 094204. doi: 10.7498/aps.64.094204
    [14] Wu Han-Zhong, Cao Shi-Ying, Zhang Fu-Min, Qu Xing-Hua. Spectral interferometry based absolute distance measurement using frequency comb. Acta Physica Sinica, 2015, 64(2): 020601. doi: 10.7498/aps.64.020601
    [15] Wu Han-Zhong, Cao Shi-Ying, Zhang Fu-Min, Xing Shu-Jian, Qu Xing-Hua. A new method of measuring absolute distance by using optical frequency comb. Acta Physica Sinica, 2014, 63(10): 100601. doi: 10.7498/aps.63.100601
    [16] Wang Guo-Chao, Yan Shu-Hua, Yang Jun, Lin Cun-Bao, Yang Dong-Xing, Zou Peng-Fei. Analysis of an innovative method for large-scale high-precision absolute distance measurement based on multi-heterodyne interference of dual optical frequency combs. Acta Physica Sinica, 2013, 62(7): 070601. doi: 10.7498/aps.62.070601
    [17] Wu Xue-Jian, Wei Hao-Yun, Zhu Min-Hao, Zhang Ji-Tao, Li Yan. Frequency measurement of dual frequency He-Ne laser based on a femtosecond optical frequency comb. Acta Physica Sinica, 2012, 61(18): 180601. doi: 10.7498/aps.61.180601
    [18] Zhang Li-Qiong, Li Yan, Zhu Min-Hao, Zhang Ji-Tao. Method on double-pass acousto-optic frequency shifter in absolute distance measurement using Fabry-Pérot interferometry. Acta Physica Sinica, 2012, 61(18): 180701. doi: 10.7498/aps.61.180701
    [19] Meng Fei, Cao Shi-Ying, Cai Yue, Wang Gui-Zhong, Cao Jian-Ping, Li Tian-Chu, Fang Zhan-Jun. Study of the femtosecond fiber comb and absolute optical frequency measurement. Acta Physica Sinica, 2011, 60(10): 100601. doi: 10.7498/aps.60.100601
    [20] Fang Zhan-Jun, Wang Qiang, Wang Min-Ming, Meng Fei, Lin Bai-Ke, Li Tian-Chu. Femtosecond frequency comb and optical frequency measurement of 532 nm Nd:YAG laser. Acta Physica Sinica, 2007, 56(10): 5684-5690. doi: 10.7498/aps.56.5684
Metrics
  • Abstract views:  7818
  • PDF Downloads:  448
  • Cited By: 0
Publishing process
  • Received Date:  01 March 2016
  • Accepted Date:  12 April 2016
  • Published Online:  05 July 2016

/

返回文章
返回