Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Single molecular study on interactions between avidin and DNA

Cao Bo-Zhi Lin Yu Wang Yan-Wei Yang Guang-Can

Citation:

Single molecular study on interactions between avidin and DNA

Cao Bo-Zhi, Lin Yu, Wang Yan-Wei, Yang Guang-Can
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Avidin is a common basic protein, widely used for connecting DNA and modified surface in single-molecule techniques of biophysics, and it can also be used as a DNA vector in gene therapy. Avidin is highly positively charged and can condense DNA in solution. Understanding the physical mechanism of its condensing DNA is a key factor to promote avidin-DNA complex to be used for many purposes, such as a probe of biomacromlecules, signal enhancer or carrier of disease diagnosis.In the present study, we use atomic force microscope (AFM), dynamic light scattering (DLS), and single molecular magnetic tweezers (MT) to systematically investigate the interaction between DNA and avidin and the underlying mechanism of DNA condensation by avidin. The conformation of DNA-avidin complex is observed and measured by AFM and we find that the condensation includes two types: one is toroidal condensation of DNA induced by avidin, the other is the condensing structure by avidin compaction. Quantitative analysis shows that the size of avidin-DNA complex decreases monotonically with the concentration of avidin increasing. However, when the concentration of avidin reaches up to a critical value of 2 ngL-1, the size of complex begins to increase suddenly with avidin concentration increasing. The phenomenon is also confirmed by the corresponding DLS measurements. For example, when the concentration of avidin increases from 0 to 2 ngL-1, the size of condensed avidin-DNA complex reduces from 170 nm to about 125 nm. In the mean while, its electrophoretic mobility changes from -2.76 (10-4cm2V-1s-1) to -0.1 (10-4 cm2V-1s-1). The negative charge of DNA is mostly neutralized by avidin. From their force spectroscopy measured by MT, it is found that the extension of DNA varies almost linearly and a few stairlike jumps appear occasionally. For example, its characteristic trend is quite similar to the one by histones. The condensing force of DNA by avidin grows up with the concentration of avidin increasing. The statistics of force-extension curves by MT shows that the peak of unraveling steps of avidin-DNA complex is around 160 nm, which corresponds to the typical toroidal structure of DNA.In DNA condensation by avidin, electrostatic interaction plays a key role due to the neutralization of negatively charged phosphate groups of DNA by cationic avidin. From the comprehensive data by AFM, DLS and MT, we conclude that the process of DNA condensation induced by avidin consists of two mechnisms: the predominant DNA-avidin electrostatic attraction and the ancillary avidin aggregation.
      Corresponding author: Yang Guang-Can, yanggc@wzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274245, 11574232), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11304232), the Natural Science Foundation of Zhejiang Province, China (Grant No. LY14F050008), and the Innovation Fund of Wenzhou University, China (Grant No. 3162014036).
    [1]

    Schiessel H 2003 J. Phys.: Condens. Matter 15 R699

    [2]

    Kubčkov A, Kř'ižek T, Coufal P, Vazdar M, Wernersson E, Heyda J, Jungwirth P 2012 Phys. Rev. Lett. 108 186101

    [3]

    Cortini R, Car B R, Victor J M, Barbi M 2015 J. Chem. Phys. 142 105102

    [4]

    Yoo J, Aksimentiev A 2016 Nucleic Acids Res. 44 2036

    [5]

    Bloomfield V A 1997 Biopolymers 44 269

    [6]

    Mohanty U, Ninham B W, Oppenheim I 1996 Proc. Natl. Acad. Sci. U.S.A. 93 4342

    [7]

    Akinchina A, Linse P 2002 Macromolecules 35 5183

    [8]

    Manning G S 1978 Q. Rev. Biophys. 11 179

    [9]

    Besteman K, Van E K, Lemay S 2007 Nat. Phys. 3 641

    [10]

    Grosberg A Y, Nguyen T T, Shklovskii B I 2002 Rev. Mod. Phys. 74 329

    [11]

    Besteman K, Hage S, Dekker N H, Lemay S G 2007 Phys. Rev. Lett. 98 058103

    [12]

    Lin Y, Yang G C, Wang Y W 2013 Acta Phys. Sin. 62 118702 (in Chinese) [林瑜, 杨光参, 王艳伟 2013 物理学报 62 118702]

    [13]

    Murayama Y, Wada H, Sano M 2007 Europhys. Lett. 79 58001

    [14]

    Zhang X H, Xiao B, Hou X M, Xu C H, Wang P Y, Li M 2009 Acta Phys. Sin. 58 4301 (in Chinese) [张兴华, 肖彬, 侯锡苗, 徐春华, 王鹏业, 李明 2009 物理学报 58 4301]

    [15]

    Hou X M, Zhang X H, Wei K J, Ji C, Dou S X, Wang W C, Li M, Wang P Y 2010 Physics 39 108 (in Chinese) [侯锡苗, 张兴华, 魏孔吉, 季超, 窦硕星, 王渭池, 李明, 王鹏业 2010 物理 39 108]

    [16]

    Wang Y W, Ran S Y, Man B Y, Yang G C 2011 Soft Matte 7 4425

    [17]

    Qiu S X, Wang Y W, Cao B Z, Guo Z L, Chen Y, Yang G C 2015 Soft Matter 11 4099

    [18]

    Fraenkel-Conrat H, Snell N S, Ducay E D 1952 Arch. Biochem. Biophys. 39 80

    [19]

    Pignatto M, Realdon N, Morpurgo M 2010 Bioconjugate Chem. 21 1254

    [20]

    Morpurgo M, Facchin S, Pignatto M, Silvestri D, Casarin E, Realdon N 2012 Anal. Chem. 84 3433

    [21]

    Bigini P, Previdi S, Casarin E, Silvestri D, Violatto M B, Facchin S, Sitia L, Rosato A, Zuccolotto G, Realdon N, Fiordaliso F, Salmona M, Morpurgo M 2013 ACS Nano. 8 175

    [22]

    Buda A, Facchin S, Dassie E, Casarin E, Jepson M A, Neumann H, Hatem G, Realdon S, D'Inc R, Sturniolo G C, Morpurgo M 2015 Int. J. Nanomed. 10 399

    [23]

    Morpurgo M, Radu A, Bayer E A, Wilchek M 2004 J. Mol. Recognit. 17 558

    [24]

    Pastr D, Hamon L, Sorel I, Cam L E, Curmi P A, Pitrement O 2010 Langmuir 26 2618

    [25]

    Wang Y W, Ran S Y, Yang G C 2014 Sci. Rep. 4 15040

    [26]

    Fu W B, Wang X L, Zhang X H, Ran S Y, Yan J, Li M 2006 J. Am. Chem. Soc. 128 15040

    [27]

    Liu Y Y, Dou S X, Wang P Y, Xie P, Wang W C 2005 Acta Phys. Sin. 54 622 (in Chinese) [刘玉颖, 窦硕星, 王鹏业, 谢平, 王渭池 2005 物理学报 54 622]

    [28]

    Ran S Y, Wang X L, Fu W B, Lai Z H, Wang W C, Liu X Q, Mai Z H, Li M 2006 Chin. Phys. Lett. 23 504

  • [1]

    Schiessel H 2003 J. Phys.: Condens. Matter 15 R699

    [2]

    Kubčkov A, Kř'ižek T, Coufal P, Vazdar M, Wernersson E, Heyda J, Jungwirth P 2012 Phys. Rev. Lett. 108 186101

    [3]

    Cortini R, Car B R, Victor J M, Barbi M 2015 J. Chem. Phys. 142 105102

    [4]

    Yoo J, Aksimentiev A 2016 Nucleic Acids Res. 44 2036

    [5]

    Bloomfield V A 1997 Biopolymers 44 269

    [6]

    Mohanty U, Ninham B W, Oppenheim I 1996 Proc. Natl. Acad. Sci. U.S.A. 93 4342

    [7]

    Akinchina A, Linse P 2002 Macromolecules 35 5183

    [8]

    Manning G S 1978 Q. Rev. Biophys. 11 179

    [9]

    Besteman K, Van E K, Lemay S 2007 Nat. Phys. 3 641

    [10]

    Grosberg A Y, Nguyen T T, Shklovskii B I 2002 Rev. Mod. Phys. 74 329

    [11]

    Besteman K, Hage S, Dekker N H, Lemay S G 2007 Phys. Rev. Lett. 98 058103

    [12]

    Lin Y, Yang G C, Wang Y W 2013 Acta Phys. Sin. 62 118702 (in Chinese) [林瑜, 杨光参, 王艳伟 2013 物理学报 62 118702]

    [13]

    Murayama Y, Wada H, Sano M 2007 Europhys. Lett. 79 58001

    [14]

    Zhang X H, Xiao B, Hou X M, Xu C H, Wang P Y, Li M 2009 Acta Phys. Sin. 58 4301 (in Chinese) [张兴华, 肖彬, 侯锡苗, 徐春华, 王鹏业, 李明 2009 物理学报 58 4301]

    [15]

    Hou X M, Zhang X H, Wei K J, Ji C, Dou S X, Wang W C, Li M, Wang P Y 2010 Physics 39 108 (in Chinese) [侯锡苗, 张兴华, 魏孔吉, 季超, 窦硕星, 王渭池, 李明, 王鹏业 2010 物理 39 108]

    [16]

    Wang Y W, Ran S Y, Man B Y, Yang G C 2011 Soft Matte 7 4425

    [17]

    Qiu S X, Wang Y W, Cao B Z, Guo Z L, Chen Y, Yang G C 2015 Soft Matter 11 4099

    [18]

    Fraenkel-Conrat H, Snell N S, Ducay E D 1952 Arch. Biochem. Biophys. 39 80

    [19]

    Pignatto M, Realdon N, Morpurgo M 2010 Bioconjugate Chem. 21 1254

    [20]

    Morpurgo M, Facchin S, Pignatto M, Silvestri D, Casarin E, Realdon N 2012 Anal. Chem. 84 3433

    [21]

    Bigini P, Previdi S, Casarin E, Silvestri D, Violatto M B, Facchin S, Sitia L, Rosato A, Zuccolotto G, Realdon N, Fiordaliso F, Salmona M, Morpurgo M 2013 ACS Nano. 8 175

    [22]

    Buda A, Facchin S, Dassie E, Casarin E, Jepson M A, Neumann H, Hatem G, Realdon S, D'Inc R, Sturniolo G C, Morpurgo M 2015 Int. J. Nanomed. 10 399

    [23]

    Morpurgo M, Radu A, Bayer E A, Wilchek M 2004 J. Mol. Recognit. 17 558

    [24]

    Pastr D, Hamon L, Sorel I, Cam L E, Curmi P A, Pitrement O 2010 Langmuir 26 2618

    [25]

    Wang Y W, Ran S Y, Yang G C 2014 Sci. Rep. 4 15040

    [26]

    Fu W B, Wang X L, Zhang X H, Ran S Y, Yan J, Li M 2006 J. Am. Chem. Soc. 128 15040

    [27]

    Liu Y Y, Dou S X, Wang P Y, Xie P, Wang W C 2005 Acta Phys. Sin. 54 622 (in Chinese) [刘玉颖, 窦硕星, 王鹏业, 谢平, 王渭池 2005 物理学报 54 622]

    [28]

    Ran S Y, Wang X L, Fu W B, Lai Z H, Wang W C, Liu X Q, Mai Z H, Li M 2006 Chin. Phys. Lett. 23 504

  • [1] Zhang Yu-Hang, Xue Zhen-Yong, Sun Hao, Zhang Zhu-Wei, Chen Hu. Single molecule magnetic tweezers for unfolding dynamics of Acyl-CoA binding protein. Acta Physica Sinica, 2023, 72(15): 158702. doi: 10.7498/aps.72.20230533
    [2] Meng Jing-Yi, Lu Hong-Wei, Ma Shi-Le, Zhang Jia-Qi, He Fu-Min, Su Wei-Tao, Zhao Xiao-Dong, Tian Ting, Wang Yi, Xing Yu. Progress of application of functional atomic force microscopy in study of nanodielectric material properties. Acta Physica Sinica, 2022, 71(24): 240701. doi: 10.7498/aps.71.20221462
    [3] Yu Yi-Fei, Cao Yi. Evolution from dip-pen nanolithography to mechanochemical printing. Acta Physica Sinica, 2021, 70(2): 024202. doi: 10.7498/aps.70.20201537
    [4] Wen Huan-Fei, Yasuhiro Sugawara, Li Yan-Jun. Effects of subsurface charge on surface defect and adsorbate of rutile TiO2 (110). Acta Physica Sinica, 2020, 69(21): 210701. doi: 10.7498/aps.69.20200773
    [5] Chen Ze, Ma Jian-Bing, Huang Xing-Yuan, Jia Qi, Xu Chun-Hua, Zhang Hui-Dong, Lu Ying. T7 helicase unwinding and stand switching investigated via single-molecular technology. Acta Physica Sinica, 2018, 67(11): 118201. doi: 10.7498/aps.67.20180501
    [6] Teng Cui-Juan, Lu Yue, Ma Jian-Bing, Li Ming, Lu Ying, Xu Chun-Hua. Interaction between Sso7d and DNA studied by single-molecule technique. Acta Physica Sinica, 2018, 67(14): 148201. doi: 10.7498/aps.67.20180630
    [7] Zhao Zhen-Ye, Xu Chun-Hua, Li Jing-Hua, Huang Xing-Yuan, Ma Jian-Bing, Lu Ying. Study of Bloom resolving G-quadruplex process by using high resolution magnetic tweezer with illumination of total internal reflection. Acta Physica Sinica, 2017, 66(18): 188701. doi: 10.7498/aps.66.188701
    [8] Zhou Hao-Tian, Gao Xiang, Zheng Peng, Qin Meng, Cao Yi, Wang Wei. Mechanical properties of elastomeric proteins studied by single molecule force spectroscopy. Acta Physica Sinica, 2016, 65(18): 188703. doi: 10.7498/aps.65.188703
    [9] Qian Hui, Chen Hu, Yan Jie. Frontier of soft matter experimental technique: single molecular manipulation. Acta Physica Sinica, 2016, 65(18): 188706. doi: 10.7498/aps.65.188706
    [10] Zhang Yu-Wei, Yan Yan, Nong Da-Guan, Xu Chun-Hua, Li Ming. Combination of magnetic tweezers with DNA hairpin as a potential approach to the study of RecA-mediated homologous recombination. Acta Physica Sinica, 2016, 65(21): 218702. doi: 10.7498/aps.65.218702
    [11] Xue Hui, Ma Zong-Min, Shi Yun-Bo, Tang Jun, Xue Chen-Yang, Liu Jun, Li Yan-Jun. Magnetic exchange force microscopy using ferromagnetic resonance. Acta Physica Sinica, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [12] Wang Shuang, Zheng Hai-Zi, Zhao Zhen-Ye, Lu Yue, Xu Chun-Hua. A pair of high resolution magnetic tweezers with illumination of total reflection evanescent field and its application in the study of DNA helicases. Acta Physica Sinica, 2013, 62(16): 168703. doi: 10.7498/aps.62.168703
    [13] Ran Shi-Yong. Brownian motion in a harmonic trap: magnetic tweezers experiment and its simulation. Acta Physica Sinica, 2012, 61(17): 170503. doi: 10.7498/aps.61.170503
    [14] Ji Chao, Zhang Ling-Yun, Dou Shuo-Xing, Wang Peng-Ye. A new method to deal with biomacromolecularimage observed by atomic force microscopy. Acta Physica Sinica, 2011, 60(9): 098703. doi: 10.7498/aps.60.098703
    [15] Zhang Xing-Hua, Xiao Bin, Hou Xi-Miao, Xu Chun-Hua, Wang Peng-Ye, Li Ming. Study of cisplatin-induced DNA compaction using single molecule magnetic tweezers. Acta Physica Sinica, 2009, 58(6): 4301-4306. doi: 10.7498/aps.58.4301
    [16] Fan Kang-Qi, Jia Jian-Yuan, Zhu Ying-Min, Liu Xiao-Yuan. Dynamic model of atomic force microscopy in tapping-mode. Acta Physica Sinica, 2007, 56(11): 6345-6351. doi: 10.7498/aps.56.6345
    [17] Hu Hai-Long, Zhang Kun, Wang Zhen-Xing, Wang Xiao-Ping. Study of the transport properties of self-assembled alkanethiol monolayer by conduction atomic force microscopy. Acta Physica Sinica, 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [18] Ou Gu-Ping, Song Zhen, Gui Wen-Ming, Zhang Fu-Jia. Surface analysis of LiBq4/ITO and LiBq4/CuPc/ITO using atomic force microscopy and x-ray photoelectron spectroscopy. Acta Physica Sinica, 2005, 54(12): 5717-5722. doi: 10.7498/aps.54.5717
    [19] Zhang Xiang-Jun, Meng Yong-Gang, Wen Shi-Zhu. On micro scanning forces under the coupling deformation of atomic force microscope probe. Acta Physica Sinica, 2004, 53(3): 728-733. doi: 10.7498/aps.53.728
    [20] Sun Run-Guang, Qi Hao, Zhang Jing. . Acta Physica Sinica, 2002, 51(6): 1203-1207. doi: 10.7498/aps.51.1203
Metrics
  • Abstract views:  7076
  • PDF Downloads:  255
  • Cited By: 0
Publishing process
  • Received Date:  23 February 2016
  • Accepted Date:  03 April 2016
  • Published Online:  05 July 2016

/

返回文章
返回