-
G-quadruplex (G4) is a DNA structure which commonly exists in human genome, and it is considered as an important structure in DNA metabolism such as replication, transcription and homologous recombination. The G-quadruplex helicases have been widely investigated these years. Of them, the Bloom (BLM) helicase is most thoroughly studied. However, there are some basic problems that are still unclear. Most of previous studies of G4 are performed by single molecule fluorescence resonance energy transfer technique. The G4 is in a free state in these experiments, which is different from the physiological environment in cells. The traditional magnetic tweezers have a limitation of spatial resolution in a low force circumstance. Thus here we use high resolution magnetic tweezer under the illumination of total internal reflection fluorescence to study the process of BLM resolving G4. Our modification of magnetic tweezer is to separate the measurements of force and distance of magnetic tweezer in order to improve the spatial resolution, which allows us to observe the unfolding process of G4. With a 2-3 pN force we find that the process of BLM unfolding G4 in low ATP concentration is stepwise, and the G4 is mainly in the state between G-quadruplex and G-triplex. We also find that the BLM could interact with G4 for a long time. Our apparatus is also able to obtain the long time observation results compared with the single molecule fluorescence technique. So we perform experiments with a nearly saturated ATP concentration. We find that the BLM has two ways to maintain G4 dissolution in this condition. The BLM could unfold the G4 repetitively in a long period and it could also keep the G4 in unfolding state for a long time after it has opened the G4. Finally, we also perform single molecule fluorescence resonance energy transfer experiment in the same condition, and we find that the 2-3 pN force in magnetic tweezers has a rare influence on the process of BLM interacting with G4. The results of single molecule fluorescence resonance energy transfer experiments are corresponding to the results of magnetic tweezer in the same conditions. All of our experimental results show that ATP dependent BLM has a high affinity with G4 and BLM has a different way to resolve G4 in high ATP concentration. These results could provide new ideas of the mechanism of BLM resolving G4. Our modified magnetic tweezer shows its capacity in G4 single molecule study, and it could be a useful tool in the future single molecule studies.
-
Keywords:
- Bloom helicase /
- G-quadruplex /
- total internal reflection /
- magnetic tweezer
[1] Phan A T 2010 FEBS J. 277 1107
[2] Maizels N, Gray L T 2013 PLoS Genet. 9 1003468
[3] Noer S L, Preus S, Gudnason D, Aznauryan M, Mergny J L, Birkedal V 2016 Nucl. Acids Res. 44 464
[4] Lim K W, Amrane S, Bouaziz S, Xu W X, Mu Y G, Patel D J, Luu K N, Phan A T 2009 J. Am. Chem. Soc. 131 4301
[5] Hansel R, Lohr F, Trantirek L, Dotsch V 2013 J. Am. Chem. Soc. 135 2816
[6] Li W, Hou X M, Wang P Y, Xi X G, Li M 2013 J. Am. Chem. Soc. 135 6423
[7] Koirala D, Mashimo T, Sannohe Y, Yu Z, Mao H, Sugiyama H 2012 Chem. Commun. 48 2006
[8] Balasubramanian S, Neidle S 2009 Curr. Opin. Chem. Biol. 13 345
[9] Huppert J L, Balasubramanian S 2005 Nucl. Acids Res. 33 2908
[10] Todd A K, Johnston M, Neidle S 2005 Nucl. Acids Res. 33 2901
[11] Croteau D L, Popuri V, Opresko P L, Bohr V A 2014 Annu. Rev. Biochem. 83 519
[12] Cheok C F, Bachrati C Z, Chan K L, Ralf C, Wu L, Hickson I D 2005 Biochem. Soc. Trans. 33 1456
[13] Goto M 2000 Clin. Exp. Rheumatol. 18 760
[14] Lindor N M, Furuichi Y, Kitao S, Shimamoto A, Arndt C, Jalal S 2000 Am. J. Med. Genet. 90 223
[15] German J, Sanz M A, Ciocci S, Ye T Z, Ellis N A 2007 Hum. Mutat. 28 743
[16] Ellis N A, Groden J, Ye T Z, Straughen J, Lennon D J, Ciocci S, Proytcheva M, German J 1995 Cell 83 655
[17] Wu L, Hickson I D 2003 Nature 426 870
[18] Xu Y N, Bazeille N, Ding X Y, Lu X M, Wang P Y, Bugnard E, Grondin V, Dou S X, Xi X G 2012 Nucl. Acids Res. 40 9802
[19] Sun H, Karow J K, Hickson I D, Maizels N 1998 J. Biol. Chem. 273 27587
[20] Budhathoki J B, Ray S, Urban V, Janscak P, Yodh J G, Balci H 2014 Nucl. Acids Res. 42 11528
[21] Chatterjee S, Zagelbaum J, Savitsky P, Sturzenegger A, Huttner D, Janscak P, Hickson I D, Gileadi O, Rothenberg E 2014 Nat. Commun. 5 5556
[22] Tippana R, Hwang H, Opresko P L, Bohr V A, Myong S 2016 Proc. Natl. Acad. Sci. USA 113 8448
[23] Wu W Q, Hou X M, Li M, Dou S X, Xi X G 2015 Nucl. Acids Res. 43 4614
[24] Wang S, Zheng H Z, Zhao Z Y, Lu Y, Xu C H 2013 Acta Phys. Sin. 62 168703(in Chinese)[王爽, 郑海子, 赵振业, 陆越, 徐春华2013物理学报 62 168703]
[25] Boncina M, Lah J, Prislan I, Vesnaver G 2012 J. Am. Chem. Soc. 134 9657
[26] Ambrus A, Chen D, Dai J X, Bialis T, Jones R A, Yang D Z 2006 Nucl. Acids Res. 34 2723
[27] Manosas M, Xi X G, Bensimon D, Croquette V 2010 Nucl. Acids Res. 38 5518
[28] Roy R, Hohng S, Ha T 2008 Nat. Meth. 5 507
-
[1] Phan A T 2010 FEBS J. 277 1107
[2] Maizels N, Gray L T 2013 PLoS Genet. 9 1003468
[3] Noer S L, Preus S, Gudnason D, Aznauryan M, Mergny J L, Birkedal V 2016 Nucl. Acids Res. 44 464
[4] Lim K W, Amrane S, Bouaziz S, Xu W X, Mu Y G, Patel D J, Luu K N, Phan A T 2009 J. Am. Chem. Soc. 131 4301
[5] Hansel R, Lohr F, Trantirek L, Dotsch V 2013 J. Am. Chem. Soc. 135 2816
[6] Li W, Hou X M, Wang P Y, Xi X G, Li M 2013 J. Am. Chem. Soc. 135 6423
[7] Koirala D, Mashimo T, Sannohe Y, Yu Z, Mao H, Sugiyama H 2012 Chem. Commun. 48 2006
[8] Balasubramanian S, Neidle S 2009 Curr. Opin. Chem. Biol. 13 345
[9] Huppert J L, Balasubramanian S 2005 Nucl. Acids Res. 33 2908
[10] Todd A K, Johnston M, Neidle S 2005 Nucl. Acids Res. 33 2901
[11] Croteau D L, Popuri V, Opresko P L, Bohr V A 2014 Annu. Rev. Biochem. 83 519
[12] Cheok C F, Bachrati C Z, Chan K L, Ralf C, Wu L, Hickson I D 2005 Biochem. Soc. Trans. 33 1456
[13] Goto M 2000 Clin. Exp. Rheumatol. 18 760
[14] Lindor N M, Furuichi Y, Kitao S, Shimamoto A, Arndt C, Jalal S 2000 Am. J. Med. Genet. 90 223
[15] German J, Sanz M A, Ciocci S, Ye T Z, Ellis N A 2007 Hum. Mutat. 28 743
[16] Ellis N A, Groden J, Ye T Z, Straughen J, Lennon D J, Ciocci S, Proytcheva M, German J 1995 Cell 83 655
[17] Wu L, Hickson I D 2003 Nature 426 870
[18] Xu Y N, Bazeille N, Ding X Y, Lu X M, Wang P Y, Bugnard E, Grondin V, Dou S X, Xi X G 2012 Nucl. Acids Res. 40 9802
[19] Sun H, Karow J K, Hickson I D, Maizels N 1998 J. Biol. Chem. 273 27587
[20] Budhathoki J B, Ray S, Urban V, Janscak P, Yodh J G, Balci H 2014 Nucl. Acids Res. 42 11528
[21] Chatterjee S, Zagelbaum J, Savitsky P, Sturzenegger A, Huttner D, Janscak P, Hickson I D, Gileadi O, Rothenberg E 2014 Nat. Commun. 5 5556
[22] Tippana R, Hwang H, Opresko P L, Bohr V A, Myong S 2016 Proc. Natl. Acad. Sci. USA 113 8448
[23] Wu W Q, Hou X M, Li M, Dou S X, Xi X G 2015 Nucl. Acids Res. 43 4614
[24] Wang S, Zheng H Z, Zhao Z Y, Lu Y, Xu C H 2013 Acta Phys. Sin. 62 168703(in Chinese)[王爽, 郑海子, 赵振业, 陆越, 徐春华2013物理学报 62 168703]
[25] Boncina M, Lah J, Prislan I, Vesnaver G 2012 J. Am. Chem. Soc. 134 9657
[26] Ambrus A, Chen D, Dai J X, Bialis T, Jones R A, Yang D Z 2006 Nucl. Acids Res. 34 2723
[27] Manosas M, Xi X G, Bensimon D, Croquette V 2010 Nucl. Acids Res. 38 5518
[28] Roy R, Hohng S, Ha T 2008 Nat. Meth. 5 507
Catalog
Metrics
- Abstract views: 5956
- PDF Downloads: 111
- Cited By: 0