搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

衍射波导用于大视场角的物理问题

邬融 孙明营 周申蕾 乔战峰 华能

引用本文:
Citation:

衍射波导用于大视场角的物理问题

邬融, 孙明营, 周申蕾, 乔战峰, 华能

Physical problems of diffraction waveguide used in large field of view

Wu Rong, Sun Ming-Ying, Zhou Shen-Lei, Qiao Zhan-Feng, Hua Neng
PDF
HTML
导出引用
  • 衍射光栅已在波导中得到广泛应用, 能将光束或图像从耦入端传输并在预定位置耦合输出, 不过在应用于诸如增强现实/虚拟现实等大视场角(field of view, FOV)、彩色光源时会存在FOV不匹配、视场缺失、出射不均匀等问题. 故从这些物理问题出发, 推导出衍射波导的FOV上限、视场完整的理论边界公式, 在此基础上再分别针对单色波和复色波进行深入研究. 得出单层衍射波导在常规高折射率n = 1.75条件下, 支持单色波FOV理论上限约48°, 支持复色波颜色系数q = 1.3的FOV理论上限26.4°, 更大FOV就需要配置更高折射率和更小q值. 视场完整性的边界条件表明, 减小长波的最大衍射角和减薄波导厚度就能解决视场缺失的问题, 实用最大衍射角一般不超过75°, 波导层厚度根据FOV大小一般在0.5—1.0 mm之间. 最后提出将各全内反射视场展开为光线追迹图的方法和瞳孔均摊接收各角度光能的分布函数, 就此可求解光栅耦出区的最佳位置, 并利用分布函数的倒数来约束投射光的角分布或者光栅效率的角分布, 以在任意位置都能接收均匀出射视场: 单色波导的均匀性从0.27提高到0.15, 单光栅复色波导中长波均匀性从0.40提高到0.28. 这些研究结果有助于解决衍射波导用于大FOV和复色光的难题.
    Diffraction gratings have been widely used in waveguides. They can transmit light beams or images from the in-coupling end to the out-coupling end at predetermined positions. However, when they are applied to augmented reality and virtual reality with large field of view and color light sources, there will arise some problems such as mismatch and missing field of view, non-uniform emission, and others. Therefore, starting from these physical problems, the upper limit of the field of view for diffractive waveguide and the complete theoretical boundary formula of the field of view are derived, and on this basis, in-depth research is conducted on monochromatic waves and multicolor waves, respectively. It is concluded that the single-layer diffractive waveguide supports the theoretical upper limit of the monochromatic wave field angle of about 48° under normal high refractive index of n = 1.75, and supports the theoretical upper limit of the multicolor wave field angle of 26.4° for coefficient q = 1.3. Clearly, a larger field of view requires a higher refractive index n and a smaller q value. The boundary conditions of field integrity indicate that reducing the maximum diffraction angle of the long wave and thinning the thickness of the waveguide layer can solve the problem of missing field of view. The practical maximum diffraction angle generally does not exceed 75°, and the thickness of the waveguide layer is about 0.5 to 1.0 mm generally based on the incident field of view. Finally, a method of expanding each total internal reflection field of view into a ray tracing diagram and a distribution function of pupils to receive light energy at various angles are obtained. In this way, the optimal position of the out-coupling grating region can be achieved, and the inverse of the distribution function is used to constrain the angular distribution of the projected light or the grating efficiency, and then receiving uniform exit image at any position becomes possible. The uniformity of the monochromatic waveguide increases from 0.27 to 0.15, and the uniformity of the long wave in the single grating multicolor waveguide rises from 0.4 to 0.28. The results of these studies will undoubtedly help to solve the problem in the diffractive waveguides used in large field of view and multicolor light.
      通信作者: 邬融, 46438131@qq.com
    • 基金项目: 中国科学院战略性先导科技专项(批准号: XDA25020202)、国家自然科学基金(批准号: 61975218)和中国科学院青年创新促进会项目(批准号: 2018282)资助的课题
      Corresponding author: Wu Rong, 46438131@qq.com
    • Funds: Project supported by the Strategic Pilot Technology Project, Chinese Academy of Sciences (Grant No. XDA25020202), the National Natural Science Foundation of China (Grant No. 61975218), and a Project of Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2018282)
    [1]

    Miller J M, Beaucoudrey N, Chavel P, Turunen J, Cambril E 1997 Appl. Opt. 36 5717Google Scholar

    [2]

    Kimmel J, Levola T, Saarikko P, et al. 2008 JSID 16 351Google Scholar

    [3]

    Jagt H J B, Cornelissen H J, Bastiaansen C W M, Broer D J 2004 Adv. Mater. 16 2108Google Scholar

    [4]

    周忠, 周颐, 肖江剑 2015 中国科学: 信息科学 45 157Google Scholar

    Zhou Z, Zhou Y, Xiao J J 2015 Sci.Sin. Info. 45 157Google Scholar

    [5]

    Chen H W, Weng Y S, Xu D M, Tabiryan N V, Wu S T 2016 Opt. Express 24 7287Google Scholar

    [6]

    高源, 刘越, 程德文, 王涌天 2016 计算机辅助设计与图形学学报 28 896Google Scholar

    Gao Y, Liu Y, Cheng D W, Wang Y T 2016 J. of Computer-Aided Design & Computer Graphics 28 896Google Scholar

    [7]

    Lalanne P 1999 J. Opt. Soc. Am. A 16 2517Google Scholar

    [8]

    Saarikko P 2008 Proc. SPIE 7001 700105Google Scholar

    [9]

    梁华伟, 石顺祥, 李家立 2007 物理学报 56 2293Google Scholar

    Liang H W, Shi S X, Li J L 2007 Acta Phys. Sin. 56 2293Google Scholar

    [10]

    Liu Z Y, Pang Y J, Pan C, Huang Z H 2017 Opt. Express 25 30720Google Scholar

    [11]

    Levola T, Laakkonen P 2007 Opt. Express 15 2067Google Scholar

    [12]

    Amitai Y, Reinhom S, Friesem A A 1995 Appl. Opt. 34 1352Google Scholar

    [13]

    Levola T 2006 JSID 14 467Google Scholar

    [14]

    Kress B C 2019 Proc. SPIE 11062 110620J-1

    [15]

    Zhang N N, Liu J, Han J, LI X, Yang F, Wang X, Hu B, Wang Y T 2015 Appl. Opt. 54 3645Google Scholar

    [16]

    刘辉 2012 硕士学位论文 (杭州: 浙江大学)

    Liu H 2012 M. S. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [17]

    Guo J J, Tu Y, Yang L L, Wang L L 2015 Opt. Engineering 54 232

    [18]

    曾飞, 张新 2014 中国光学 7 731

    Zeng F, Zhang X 2014 Chin. Optics 7 731

    [19]

    彭飞, 张攀, 杨德兴, 康明武, 马百恒 2015 光子学报 44 22

    Peng F, Zhang P, Yang D X, Kang M W, Ma B H 2015 Acta Photon. Sin. 44 22

    [20]

    丁意桐, 高震宇, 彭旭, 宋凝芳, 冯迪, 赵东峰, 迟小羽 2020 激光与光电子学进展 57 130801

    Ding Y T, Gao Z Y, Peng X, Song N F, Feng D, Zhao D F, Chi X Y 2020 Laser & Optoelectronics Progress 57 130801

    [21]

    尚万里, 杨家敏, 赵阳, 朱托, 熊刚 2011 物理学报 60 094212Google Scholar

    Shang W L, Yang J M, Zhao Y, Zhu T, Xiong G 2011 Acta Phys. Sin. 60 094212Google Scholar

    [22]

    刘全, 吴建宏, 郭培亮, 陈新华 2019 中国激光 46 0313001Google Scholar

    Liu Q, Wu J H, Guo P L, Chen X H 2019 Chin. J. Lasers 46 0313001Google Scholar

    [23]

    邬融, 田玉婷, 赵东峰, 李大为, 华能, 邵平 2016 物理学报 65 054202Google Scholar

    Wu R, Tian Y T, Zhao D F, Li D W, Hua N, Shao P 2016 Acta Phys. Sin. 65 054202Google Scholar

  • 图 1  波导使用不同衍射级次耦入的简示图

    Fig. 1.  Schematic diagram of waveguide coupling using different diffraction orders.

    图 2  左右微投发光经波导耦合输出到人眼, 重叠视场正好为0的理想情况

    Fig. 2.  The left and right micro-projector output light to the human eye by waveguide, where the overlapping field of view is exactly 0

    图 3  单微投θavg = FOV/2时, 衍射波导支持的最大FOV角度与折射率关系

    Fig. 3.  Relationship between the maximum FOV and the refractive index when θavg = FOV/2.

    图 4  单微投θavg = FOV/2时 (a) 固定q = 1.3, 单光栅支持多色光波导的FOV角度随n变化曲线; (b)固定n = 1.75, 单光栅支持多色光波导的FOV角度随q变化曲线

    Fig. 4.  When θavg = FOV/2: (a) q = 1.3, the relation curve between multi-color FOV and n supported by single grating; (b) n = 1.75, the relation curve between multi-color FOV and q.

    图 5  衍射波导的光线传输以及全反级次视场标记

    Fig. 5.  Light transmission of diffraction waveguide and FOV marker of TIR.

    图 6  各视场的光线追迹展开图

    Fig. 6.  Expanded ray-tracing of FOV.

    图 7  (a)各角度光线在光栅区的全内反射次数; (b)微投在x方向归一化光能的投射曲线

    Fig. 7.  (a) Number of TIR at various incident angles in the grating area; (b) required projection curve of micro-projecter normalized light energy along the x direction.

    图 8  (a) 微投在x方向归一化光能的投射曲线; (b) 按(a)图对投射端优化后的重新计算结果

    Fig. 8.  (a) Required projected angular light energy distribution function along the x direction; (b) recalculated results after optimizing the projection by (a).

    图 9  (a) 微投在x方向RGB三色光随FOV归一化光能的投射曲线; (b) 按(a)图对投射端优化后的重新计算结果

    Fig. 9.  (a) Required projected angular light energy distribution function of RGB along the x direction; (b) recalculated results after optimizing the projection by (a).

    图 10  (a) 微投在x方向GB两色光随视场角度归一化光能的投射曲线; (b) 按(a)图对投射端优化后的重新计算结果

    Fig. 10.  (a) Required projected angular light energy distribution function of GB along the x direction; (b) recalculated results after optimizing the projection by (a).

    表 1  不同中心光线角和波导介质折射率支持耦入的最大FOV

    Table 1.  Support maximum FOV by different configurations.

    中心光
    线角/(°)
    介质折
    射率n
    FOVmax/(°)介质折
    射率n
    FOVmax/(°)
    101.529.411.7544.76
    151.530.001.7545.68
    201.530.851.7547.03
    251.532.021.7548.88
    301.533.551.7551.31
    下载: 导出CSV
  • [1]

    Miller J M, Beaucoudrey N, Chavel P, Turunen J, Cambril E 1997 Appl. Opt. 36 5717Google Scholar

    [2]

    Kimmel J, Levola T, Saarikko P, et al. 2008 JSID 16 351Google Scholar

    [3]

    Jagt H J B, Cornelissen H J, Bastiaansen C W M, Broer D J 2004 Adv. Mater. 16 2108Google Scholar

    [4]

    周忠, 周颐, 肖江剑 2015 中国科学: 信息科学 45 157Google Scholar

    Zhou Z, Zhou Y, Xiao J J 2015 Sci.Sin. Info. 45 157Google Scholar

    [5]

    Chen H W, Weng Y S, Xu D M, Tabiryan N V, Wu S T 2016 Opt. Express 24 7287Google Scholar

    [6]

    高源, 刘越, 程德文, 王涌天 2016 计算机辅助设计与图形学学报 28 896Google Scholar

    Gao Y, Liu Y, Cheng D W, Wang Y T 2016 J. of Computer-Aided Design & Computer Graphics 28 896Google Scholar

    [7]

    Lalanne P 1999 J. Opt. Soc. Am. A 16 2517Google Scholar

    [8]

    Saarikko P 2008 Proc. SPIE 7001 700105Google Scholar

    [9]

    梁华伟, 石顺祥, 李家立 2007 物理学报 56 2293Google Scholar

    Liang H W, Shi S X, Li J L 2007 Acta Phys. Sin. 56 2293Google Scholar

    [10]

    Liu Z Y, Pang Y J, Pan C, Huang Z H 2017 Opt. Express 25 30720Google Scholar

    [11]

    Levola T, Laakkonen P 2007 Opt. Express 15 2067Google Scholar

    [12]

    Amitai Y, Reinhom S, Friesem A A 1995 Appl. Opt. 34 1352Google Scholar

    [13]

    Levola T 2006 JSID 14 467Google Scholar

    [14]

    Kress B C 2019 Proc. SPIE 11062 110620J-1

    [15]

    Zhang N N, Liu J, Han J, LI X, Yang F, Wang X, Hu B, Wang Y T 2015 Appl. Opt. 54 3645Google Scholar

    [16]

    刘辉 2012 硕士学位论文 (杭州: 浙江大学)

    Liu H 2012 M. S. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [17]

    Guo J J, Tu Y, Yang L L, Wang L L 2015 Opt. Engineering 54 232

    [18]

    曾飞, 张新 2014 中国光学 7 731

    Zeng F, Zhang X 2014 Chin. Optics 7 731

    [19]

    彭飞, 张攀, 杨德兴, 康明武, 马百恒 2015 光子学报 44 22

    Peng F, Zhang P, Yang D X, Kang M W, Ma B H 2015 Acta Photon. Sin. 44 22

    [20]

    丁意桐, 高震宇, 彭旭, 宋凝芳, 冯迪, 赵东峰, 迟小羽 2020 激光与光电子学进展 57 130801

    Ding Y T, Gao Z Y, Peng X, Song N F, Feng D, Zhao D F, Chi X Y 2020 Laser & Optoelectronics Progress 57 130801

    [21]

    尚万里, 杨家敏, 赵阳, 朱托, 熊刚 2011 物理学报 60 094212Google Scholar

    Shang W L, Yang J M, Zhao Y, Zhu T, Xiong G 2011 Acta Phys. Sin. 60 094212Google Scholar

    [22]

    刘全, 吴建宏, 郭培亮, 陈新华 2019 中国激光 46 0313001Google Scholar

    Liu Q, Wu J H, Guo P L, Chen X H 2019 Chin. J. Lasers 46 0313001Google Scholar

    [23]

    邬融, 田玉婷, 赵东峰, 李大为, 华能, 邵平 2016 物理学报 65 054202Google Scholar

    Wu R, Tian Y T, Zhao D F, Li D W, Hua N, Shao P 2016 Acta Phys. Sin. 65 054202Google Scholar

  • [1] 肖勇, 曹雨生. 基于浸入界面方法的平面波导模式分析. 物理学报, 2023, 72(14): 140201. doi: 10.7498/aps.72.20230595
    [2] 张林峰, 丁潇川, 侯智善, 曹宇. 激光直写玻璃基平面波导用于荧光成像. 物理学报, 2023, 72(7): 074203. doi: 10.7498/aps.72.20222033
    [3] 付时尧, 高春清. 利用衍射光栅探测涡旋光束轨道角动量态的研究进展. 物理学报, 2018, 67(3): 034201. doi: 10.7498/aps.67.20171899
    [4] 赵振业, 徐春华, 李菁华, 黄星榞, 马建兵, 陆颖. 用全内反射瞬逝场照明磁镊研究Bloom解旋G-四联体. 物理学报, 2017, 66(18): 188701. doi: 10.7498/aps.66.188701
    [5] 邬融, 田玉婷, 赵东峰, 李大为, 华能, 邵平. 透射衍射光栅内全反射级次. 物理学报, 2016, 65(5): 054202. doi: 10.7498/aps.65.054202
    [6] 李宝, 杜炳政, 朱京平. Bragg反射齿型平面凹面衍射光栅性能研究. 物理学报, 2015, 64(15): 154211. doi: 10.7498/aps.64.154211
    [7] 翁永超, 况龙钰, 高南, 曹磊峰, 朱效立, 王晓华, 谢常青. 反射式单级衍射光栅. 物理学报, 2012, 61(15): 154203. doi: 10.7498/aps.61.154203
    [8] 周骏, 孙永堂, 孙铁囤, 刘晓, 宋伟杰. 非晶硅光伏电池表面高效光陷阱结构设计. 物理学报, 2011, 60(8): 088802. doi: 10.7498/aps.60.088802
    [9] 张军, 于天宝, 刘念华, 廖清华, 何灵娟. 全内反射型三角晶格光子晶体多模波导中的光传播特性. 物理学报, 2011, 60(10): 104217. doi: 10.7498/aps.60.104217
    [10] 张淳民, 刘宁, 吴福全. 偏振干涉成像光谱仪中格兰-泰勒棱镜全视场角透过率的分析与计算. 物理学报, 2010, 59(2): 949-957. doi: 10.7498/aps.59.949
    [11] 吕耀平, 顾国锋, 陆华春, 戴瑜, 唐国宁. 振荡介质中平面波的反射. 物理学报, 2009, 58(11): 7573-7578. doi: 10.7498/aps.58.7573
    [12] 肖玲, 程小劲, 徐剑秋. 分数自成像平面波导的光束组束. 物理学报, 2009, 58(6): 3870-3876. doi: 10.7498/aps.58.3870
    [13] 陈宪锋, 沈小明, 蒋美萍, 金 铱. 对称单负介质包层平面波导的模式特征. 物理学报, 2008, 57(6): 3578-3582. doi: 10.7498/aps.57.3578
    [14] 阮 锴, 张淳民, 赵葆常. 高层大气风场探测改型大光程差Sagnac干涉仪全视场角光程差与横向剪切量的精确计算. 物理学报, 2008, 57(9): 5435-5441. doi: 10.7498/aps.57.5435
    [15] 麻健勇, 刘世杰, 魏朝阳, 晋云霞, 赵元安, 邵建达, 范正修. 可见光波段双层浮雕型导模共振滤波器设计与分析. 物理学报, 2008, 57(7): 4195-4201. doi: 10.7498/aps.57.4195
    [16] 吴英才, 顾铮. 激励表面等离子共振的金属薄膜最佳厚度分析. 物理学报, 2008, 57(4): 2295-2299. doi: 10.7498/aps.57.2295
    [17] 麻健勇, 刘世杰, 魏朝阳, 许 程, 晋云霞, 赵元安, 邵建达, 范正修. 反射型导模共振滤波器设计. 物理学报, 2008, 57(2): 827-832. doi: 10.7498/aps.57.827
    [18] 巴音贺希格. 衍射光栅的第二类角色散及其特性分析. 物理学报, 2004, 53(7): 2118-2122. doi: 10.7498/aps.53.2118
    [19] 王 琛, 袁景和, 王桂英, 徐至展. 入射光的偏振特性对全内反射荧光显微术中荧光激发的影响. 物理学报, 2003, 52(12): 3014-3019. doi: 10.7498/aps.52.3014
    [20] 张满红, 朱邦芬, 黄绮, 王文新, 周均铭. 用推广的平面波展开法检验平面内极化的电子子带跃迁. 物理学报, 1997, 46(2): 393-399. doi: 10.7498/aps.46.393
计量
  • 文章访问数:  8423
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-02
  • 修回日期:  2020-07-29
  • 上网日期:  2020-11-27
  • 刊出日期:  2020-12-05

/

返回文章
返回