Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

T7 helicase unwinding and stand switching investigated via single-molecular technology

Chen Ze Ma Jian-Bing Huang Xing-Yuan Jia Qi Xu Chun-Hua Zhang Hui-Dong Lu Ying

Citation:

T7 helicase unwinding and stand switching investigated via single-molecular technology

Chen Ze, Ma Jian-Bing, Huang Xing-Yuan, Jia Qi, Xu Chun-Hua, Zhang Hui-Dong, Lu Ying
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Single-molecule fluorescence resonance energy transfer (smFRET) and magnetic tweezers are widely used to study the molecular motors because of their high resolution and real-time observation. In this work, we choose these two techniques as the research means. The bacteriophage T7 helicase, as the research object, serves as a model protein for ring-shaped hexameric helicase that couples deoxythymidine triphosphate (dTTP) hydrolysis to unidirectional translocation. The DNA strand separation is 5'-3'-along one strand of double-stranded DNA. Using smFRET and magnetic tweezers to study the unwinding process of T7 helicase, we can have more in depth understanding of the unwinding and strand switching mechanisms of the ring-shaped hexameric helicases. First, by designing DNA substrates with different 3'-tail structures, we find that the 3'-tail is required for T7 helicase unwinding process, no matter whether it is single-stranded or double-stranded. These results confirm an interaction between T7 helicase and 3'-tail. Second, examining the dependence of unwinding process on GC content in DNA sequence, we find that as GC content increases, T7 helicase has higher chances to stop and slips back to the initial position by annealing stress or dissociating from DNA substrate. As the GC content increases to 100%, 79% helicases could not finish the unwinding process. Third, by further analysing the experimental data, two different slipping-back phenomena of T7 helicase are observed. One is instantaneous and the other is slow. The results from the experiment on magnetic tweezers also confirm this slow slipping-back phenomenon. This instantaneous slipping-back results from the rewinding process of unwound single-stranded DNA as studied previously. When T7 helicase cannot continue unwinding because of the high GC content in DNA sequence, it dissociates from the single-stranded DNA or slips back to the initial position very quickly because of the annealing stress. However, this slow slipping-back phenomenon cannot be explained by this reason. According to previous researches, T7 helicase can only be translocated or unwound from 5' to 3' along one strand of double-stranded DNA because of the polarity principle. We suggest that this slow slipping-back is induced by the strand switching process of T7 helicase. Through this strand switching process, T7 helicase binds to the 3'-strand and are translocated along it from 5' to 3' to the initial position, results in this slow slipping-back phenomenon. This is the first time that the slow slipping-back phenomenon has been observed, which strongly suggests the strand switching process of T7 helicase. Based on our results and previous researches, we propose the model of this strand switching process and this model may be extended to all ring-shaped hexameric helicases.
      Corresponding author: Zhang Hui-Dong, huidong.zhang@foxmail.com;yinglu@iphy.ac.cn ; Lu Ying, huidong.zhang@foxmail.com;yinglu@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11674382) and the National Basic Research Program of China (Grant No. 2017YFC1002002).
    [1]

    Dillingham M S 2011 Biochem. Soc. Trans. 39 413

    [2]

    Jankowsky E 2011 Trends Biochem. Sci. 36 19

    [3]

    Bernstein K A, Gangloff S, Rothstein R 2010 Annu. Rev. Genet. 44 393

    [4]

    Zhao D Y, Liu S Y, Gao Y 2018 Acta Biochim. Biophys. Sin. 146 1093

    [5]

    Klaue D, Kobbe D, Kemmerich F, Kozikowska A, Puchta H, Seidel R 2013 Nat. Commun. 4 2024

    [6]

    Li J H, Lin W X, Zhang B, Nong D G, Ju H P, Ma J B, Xu C H, Ye F F, Xi X G, Li M, Lu Y, Dou S X 2016 Nucleic Acids Res. 44 4330

    [7]

    Wang S, Qin W, Li J H, Lu Y, Lu K Y, Nong D G, Dou S X, Xu C H, Xi X G, Li M 2015 Nucleic Acids Res. 43 3736

    [8]

    Dessinges M N, Lionnet T, Xi X G, Bensimon D, Croquette V 2004 Proc. Natl. Acad. Sci. USA 101 6439

    [9]

    Sun B, Johnson D S, Patel G, Smith B Y, Pandey M, Patel S S, Wang M D 2011 Nature 478 132

    [10]

    Johnson D S, Bai L, Smith B Y, Patel S S, Wang M D 2007 Cell 129 1299

    [11]

    Zhao Z Y, Xu C H, Li J H, Huang X Y, Ma J B, Lu Y 2017 Acta Phys. Sin. 66 188701(in Chinese) [赵振业, 徐春华, 李菁华, 黄星榞, 马建兵, 陆颖 2017 物理学报 66 188701]

    [12]

    Wang S, Zheng H Z, Zhao Z Y, Lu Y, Xu C H 2013 Acta Phys. Sin. 62 168703(in Chinese) [王爽, 郑海子, 赵振业, 陆越, 徐春华 2013 物理学报 62 168703]

    [13]

    Lin W X, Ma J B, Nong D G, Xu C H, Zhang B, Li J H, Jia Q, Dou S X, Ye F F, Xi X G, Lu Y, Li M 2017 Phys. Rev. Lett. 119 138102

    [14]

    Zhang H, Lee S J, Zhu B, Tran N Q, Tabor S, Richardson C C 2011 Proc. Natl. Acad. Sci. USA 108 9372

    [15]

    Zhang H, Tang Y, Lee S J, Wei Z, Cao J, Richardson C C 2016 J. Biol. Chem. 291 1472

    [16]

    Matson S W, Tabor S, Richardson C C 1983 J. Biol. Chem. 258 14017

    [17]

    Ahnert P, Patel S S 1997 J. Biol. Chem. 272 32267

    [18]

    Syed S, Pandey M, Patel S S, Ha T 2014 Cell Rep. 6 1037

    [19]

    Donmez I, Patel S S 2008 EMBO J. 27 1718

    [20]

    Jeong Y J, Levin M K, Patel S S 2004 Proc. Natl. Acad. Sci. USA 101 7264

    [21]

    Patel S S, Picha K M 2000 Annu. Rev. Biochem. 69 651

    [22]

    Morris P D, Raney K D 1999 Biochem. 38 5164

    [23]

    Tabor S, Richardson C C 1981 Proc. Natl. Acad. Sci. USA 78 205

    [24]

    Hacker K J, Johnson K A 1997 Biochem. 36 14080

    [25]

    Korhonen J A, Gaspari M, Falkenberg M 2003 J. Biol. Chem. 278 48627

    [26]

    Ahnert P, Picha K M, Patel S S 2000 EMBO J. 19 3418

  • [1]

    Dillingham M S 2011 Biochem. Soc. Trans. 39 413

    [2]

    Jankowsky E 2011 Trends Biochem. Sci. 36 19

    [3]

    Bernstein K A, Gangloff S, Rothstein R 2010 Annu. Rev. Genet. 44 393

    [4]

    Zhao D Y, Liu S Y, Gao Y 2018 Acta Biochim. Biophys. Sin. 146 1093

    [5]

    Klaue D, Kobbe D, Kemmerich F, Kozikowska A, Puchta H, Seidel R 2013 Nat. Commun. 4 2024

    [6]

    Li J H, Lin W X, Zhang B, Nong D G, Ju H P, Ma J B, Xu C H, Ye F F, Xi X G, Li M, Lu Y, Dou S X 2016 Nucleic Acids Res. 44 4330

    [7]

    Wang S, Qin W, Li J H, Lu Y, Lu K Y, Nong D G, Dou S X, Xu C H, Xi X G, Li M 2015 Nucleic Acids Res. 43 3736

    [8]

    Dessinges M N, Lionnet T, Xi X G, Bensimon D, Croquette V 2004 Proc. Natl. Acad. Sci. USA 101 6439

    [9]

    Sun B, Johnson D S, Patel G, Smith B Y, Pandey M, Patel S S, Wang M D 2011 Nature 478 132

    [10]

    Johnson D S, Bai L, Smith B Y, Patel S S, Wang M D 2007 Cell 129 1299

    [11]

    Zhao Z Y, Xu C H, Li J H, Huang X Y, Ma J B, Lu Y 2017 Acta Phys. Sin. 66 188701(in Chinese) [赵振业, 徐春华, 李菁华, 黄星榞, 马建兵, 陆颖 2017 物理学报 66 188701]

    [12]

    Wang S, Zheng H Z, Zhao Z Y, Lu Y, Xu C H 2013 Acta Phys. Sin. 62 168703(in Chinese) [王爽, 郑海子, 赵振业, 陆越, 徐春华 2013 物理学报 62 168703]

    [13]

    Lin W X, Ma J B, Nong D G, Xu C H, Zhang B, Li J H, Jia Q, Dou S X, Ye F F, Xi X G, Lu Y, Li M 2017 Phys. Rev. Lett. 119 138102

    [14]

    Zhang H, Lee S J, Zhu B, Tran N Q, Tabor S, Richardson C C 2011 Proc. Natl. Acad. Sci. USA 108 9372

    [15]

    Zhang H, Tang Y, Lee S J, Wei Z, Cao J, Richardson C C 2016 J. Biol. Chem. 291 1472

    [16]

    Matson S W, Tabor S, Richardson C C 1983 J. Biol. Chem. 258 14017

    [17]

    Ahnert P, Patel S S 1997 J. Biol. Chem. 272 32267

    [18]

    Syed S, Pandey M, Patel S S, Ha T 2014 Cell Rep. 6 1037

    [19]

    Donmez I, Patel S S 2008 EMBO J. 27 1718

    [20]

    Jeong Y J, Levin M K, Patel S S 2004 Proc. Natl. Acad. Sci. USA 101 7264

    [21]

    Patel S S, Picha K M 2000 Annu. Rev. Biochem. 69 651

    [22]

    Morris P D, Raney K D 1999 Biochem. 38 5164

    [23]

    Tabor S, Richardson C C 1981 Proc. Natl. Acad. Sci. USA 78 205

    [24]

    Hacker K J, Johnson K A 1997 Biochem. 36 14080

    [25]

    Korhonen J A, Gaspari M, Falkenberg M 2003 J. Biol. Chem. 278 48627

    [26]

    Ahnert P, Picha K M, Patel S S 2000 EMBO J. 19 3418

  • [1] Luo Ze-Wei, Wu Ge, Chen Zhi, Deng Chi-Nan, Wan Rong, Yang Tao, Zhuang Zheng-Fei, Chen Tong-Sheng. Dual-channel structured illumination super-resolution quantitative fluorescence resonance energy transfer imaging. Acta Physica Sinica, 2023, 72(20): 208701. doi: 10.7498/aps.72.20230853
    [2] Zhang Zhi-Peng, Liu Shuai, Zhang Yu-Qiong, Xiong Ying, Han Wei-Jing, Chen Tong-Sheng, Wang Shuang. Rotation manipulation of single-molecule magnetic trapping and gene transcription regulation dynamics. Acta Physica Sinica, 2023, 72(21): 218701. doi: 10.7498/aps.72.20231089
    [3] Zhang Yue-Yue, Han Wei-Jing, Chen Tong-Sheng, Wang Shuang. Mechanism of Sen1 translocation. Acta Physica Sinica, 2023, 72(10): 108701. doi: 10.7498/aps.72.20230187
    [4] Zhang Yu-Hang, Xue Zhen-Yong, Sun Hao, Zhang Zhu-Wei, Chen Hu. Single molecule magnetic tweezers for unfolding dynamics of Acyl-CoA binding protein. Acta Physica Sinica, 2023, 72(15): 158702. doi: 10.7498/aps.72.20230533
    [5] Li Dong-Yang, Zhang Yuan-Xian, Ou Yong-Xiong, Pu Xiao-Yun. Optofluidic fluorescence resonance energy transfer lasing in a polydimethylsiloxane microfluidic channel. Acta Physica Sinica, 2019, 68(5): 054203. doi: 10.7498/aps.68.20181696
    [6] Ma Jian-Bing, Zhai Yong-Liang, Nong Da-Guan, Li Jing-Hua, Fu Hang, Zhang Xing-Hua, Li Ming, Lu Ying, Xu Chun-Hua. Single molecule transverse magnetic tweezers based on light sheet illumination. Acta Physica Sinica, 2018, 67(14): 148702. doi: 10.7498/aps.67.20180441
    [7] Teng Cui-Juan, Lu Yue, Ma Jian-Bing, Li Ming, Lu Ying, Xu Chun-Hua. Interaction between Sso7d and DNA studied by single-molecule technique. Acta Physica Sinica, 2018, 67(14): 148201. doi: 10.7498/aps.67.20180630
    [8] Qin Ya-Qiang, Chen Rui-Yun, Shi Ying, Zhou Hai-Tao, Zhang Guo-Feng, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang. The role of chain conformation in energy transfer properties of single conjugated polymer molecule. Acta Physica Sinica, 2017, 66(24): 248201. doi: 10.7498/aps.66.248201
    [9] Zhao Zhen-Ye, Xu Chun-Hua, Li Jing-Hua, Huang Xing-Yuan, Ma Jian-Bing, Lu Ying. Study of Bloom resolving G-quadruplex process by using high resolution magnetic tweezer with illumination of total internal reflection. Acta Physica Sinica, 2017, 66(18): 188701. doi: 10.7498/aps.66.188701
    [10] Lü Xi-Ming, Li Hui, You Jing, Li Wei, Wang Peng-Ye, Li Ming, Xi Xu-Guang, Dou Shuo-Xing. An optimization algorithm for single-molecule fluorescence resonance (smFRET) data processing. Acta Physica Sinica, 2017, 66(11): 118701. doi: 10.7498/aps.66.118701
    [11] Zhang Yu-Wei, Yan Yan, Nong Da-Guan, Xu Chun-Hua, Li Ming. Combination of magnetic tweezers with DNA hairpin as a potential approach to the study of RecA-mediated homologous recombination. Acta Physica Sinica, 2016, 65(21): 218702. doi: 10.7498/aps.65.218702
    [12] Cao Bo-Zhi, Lin Yu, Wang Yan-Wei, Yang Guang-Can. Single molecular study on interactions between avidin and DNA. Acta Physica Sinica, 2016, 65(14): 140701. doi: 10.7498/aps.65.140701
    [13] Qian Hui, Chen Hu, Yan Jie. Frontier of soft matter experimental technique: single molecular manipulation. Acta Physica Sinica, 2016, 65(18): 188706. doi: 10.7498/aps.65.188706
    [14] Li Mu-Ye, Li Fang, Wei Lai, He Zhi-Cong, Zhang Jun-Pei, Han Jun-Bo, Lu Pei-Xiang. Fluorescence resonance energy transfer in a aqueous system of CdTe quantum dots and Rhodamine B with two-photon excitation. Acta Physica Sinica, 2015, 64(10): 108201. doi: 10.7498/aps.64.108201
    [15] He Zhi-Cong, Li Fang, Li Mu-Ye, Wei Lai. Fluorescence resonance energy transfer between CdTe quantum dots and copper phthalocyanine. Acta Physica Sinica, 2015, 64(4): 046802. doi: 10.7498/aps.64.046802
    [16] Wang Shuang, Zheng Hai-Zi, Zhao Zhen-Ye, Lu Yue, Xu Chun-Hua. A pair of high resolution magnetic tweezers with illumination of total reflection evanescent field and its application in the study of DNA helicases. Acta Physica Sinica, 2013, 62(16): 168703. doi: 10.7498/aps.62.168703
    [17] Ran Shi-Yong. Brownian motion in a harmonic trap: magnetic tweezers experiment and its simulation. Acta Physica Sinica, 2012, 61(17): 170503. doi: 10.7498/aps.61.170503
    [18] Zhang Xing-Hua, Xiao Bin, Hou Xi-Miao, Xu Chun-Hua, Wang Peng-Ye, Li Ming. Study of cisplatin-induced DNA compaction using single molecule magnetic tweezers. Acta Physica Sinica, 2009, 58(6): 4301-4306. doi: 10.7498/aps.58.4301
    [19] PAN DUO-HAI, MA YONG-HONG. A STUDY OF SURFACE-ENHANCED ENERGY TRANSFER EFFECT BETWEEN MOLECULES. Acta Physica Sinica, 1995, 44(12): 1914-1920. doi: 10.7498/aps.44.1914
    [20] GAO WEN-BIN, SHEN YU-QI, J. H?GER, W. KRIEGER. VIBRATIONAL ENERGY TRANSFER STUDY OF DICHLOROMETHANE (CH2Cl2) BY LASER INDUCED FLUORESCENCE METHOD. Acta Physica Sinica, 1985, 34(10): 1261-1269. doi: 10.7498/aps.34.1261
Metrics
  • Abstract views:  7771
  • PDF Downloads:  184
  • Cited By: 0
Publishing process
  • Received Date:  20 March 2018
  • Accepted Date:  10 April 2018
  • Published Online:  05 June 2018

/

返回文章
返回