Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dual-channel structured illumination super-resolution quantitative fluorescence resonance energy transfer imaging

Luo Ze-Wei Wu Ge Chen Zhi Deng Chi-Nan Wan Rong Yang Tao Zhuang Zheng-Fei Chen Tong-Sheng

Citation:

Dual-channel structured illumination super-resolution quantitative fluorescence resonance energy transfer imaging

Luo Ze-Wei, Wu Ge, Chen Zhi, Deng Chi-Nan, Wan Rong, Yang Tao, Zhuang Zheng-Fei, Chen Tong-Sheng
PDF
HTML
Get Citation
  • The Structured illumination (SI)-based super resolution fluorescence resonance energy transfer (SR-FRET) imaging technique, known as SISR-FRET, enables the investigation of molecular structures and functions in cellular organelles by resolving sub-diffraction FRET signals within living cells. The FRET microscopy offers unique advantages for quantitatively detecting dynamic interactions and spatial distribution of biomolecules within living cells. The spatial resolution of conventional FRET microscopy is limited by the diffraction limit, and it can only capture the average behavior of these events within the resolution limits of conventional fluorescence microscopy. The SISR-FRET performs sequential linear reconstruction of the three-channel SIM images followed by FRET quantitative analysis by using a common localization mask-based filtering approach. This two-step process ensures the fidelity of the reconstructed SR-FRET signals while effectively removing false-positive FRET signals caused by SIM artifacts. However, the slow imaging speed resulting from the switching of excitation-emission channels in SISR-FRET imaging limits its application in fast imaging scenarios. To address this issue, this study proposes a dual-channel structured illumination super-resolution quantitative FRET imaging system and method. By incorporating an FRET dual-channel imaging and registration module into the imaging pathway, the spatial switching and channel multiplexing of the SISR-FRET excitation-emission channels are achieved. Combining the image reconstruction algorithm with channel sub-pixel registration correction, the dual-channel SISR-FRET technique enhances the temporal resolution by 3.5 times while preserving the quantitative super-resolution FRET analysis. Experimental results are obtained by using a multi-color SIM system to perform super-resolution imaging of living cells expressing mitochondria outer membrane FRET standard plasmids. These experiments validate the improved spatial and temporal resolution of dual-channel SISR-FRET and the fidelity of FRET quantification analysis. In summary, this research presents a novel dual-channel structured illumination super-resolution FRET imaging system and method. It overcomes the limitations of slow imaging speed in SISR-FRET by realizing the spatial switching and channel multiplexing of excitation-emission channels. The proposed technique enhances the temporal resolution while maintaining quantitative analysis of super-resolution FRET. Experimental validation demonstrates the increased spatial and temporal resolution of dual-channel SISR-FRET and the accuracy of FRET quantification analysis. This advancement contributes to the study of molecular structures and functions in cellular organelles, providing valuable insights into the intricate mechanisms of living cells.
      Corresponding author: Chen Tong-Sheng, chentsh@scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62135003) and the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2022B0303040003).
    [1]

    Rao V S, Srinivas K, Sujini G N, Kumar G N S 2014 Int. J. Proteomics 2014 1

    [2]

    Acuner Ozbabacan S E, Engin H B, Gursoy A, Keskin O 2011 Protein Eng. Des. Sel. 24 635Google Scholar

    [3]

    Xing S, Wallmeroth N, Berendzen K W, Grefen C 2016 Plant Physiol. 171 727

    [4]

    Algar W R, Hildebrandt N, Vogel S S, Medintz I L 2019 Nat. Methods 16 815Google Scholar

    [5]

    Jares-Erijman E A, Jovin T M 2003 Nat. Biotechnol. 21 1387Google Scholar

    [6]

    Ben-Johny M, Yue D N, Yue D T 2016 Nat. Commun. 7 13709Google Scholar

    [7]

    Chen H C, Sun B N, Sun H, Xu L J, Wu G H, Tu Z, Cheng X C, Fan X H, Mai Z H, Tang Q L, Wang X P, Chen T S 2021 Cell Death Discov. 7 363Google Scholar

    [8]

    Sun B N, Chen H C, Wang X P, Chen T S 2023 Cell Death Discov. 9 37

    [9]

    Yang F F, Qu W F, Du M Y, Mai Z Y, Wang B, Ma Y Y, Wang X P, Chen T S 2020 Cell. Mol. Life Sci. 77 2387Google Scholar

    [10]

    Szalai A M, Zaza C, Stefani F D 2021 Nanoscale 13 18421Google Scholar

    [11]

    Szabó Á, Szendi-Szatmári T, Szöllősi J, Nagy P 2020 Methods Appl. Fluoresc. 8 032003Google Scholar

    [12]

    Grecco H E, Verveer P J 2011 ChemPhysChem 12 484Google Scholar

    [13]

    Deußner-Helfmann N S, Auer A, Strauss M T, Malkusch S, Dietz M S, Barth H D, Jungmann R, Heilemann M 2018 Nano Lett. 18 4626Google Scholar

    [14]

    Tardif C, Nadeau G, Labrecque S, Côté D, Lavoie-Cardinal F 2019 Neurophotonics 6 1

    [15]

    Szalai A M, Siarry B, Lukin J, Giusti S, Unsain N, Cáceres A, Steiner F, Tinnefeld P, Refojo D, Jovin T M, Stefani F D 2021 Nano Lett. 21 2296Google Scholar

    [16]

    Liu Z, Luo Z W, Chen H C, Yin A, Sun H, Zhuang Z F, Chen T S 2022 Cytom. Part A 101 264Google Scholar

    [17]

    Zhao T Y, Wang Z J, Cai Y N, Liang Y S, Wang SW, Zhang J X, Chen T S, Lei M 2023 Opt. Lasers Eng. 167 107606Google Scholar

    [18]

    Zhao W S, Zhao S Q, Li L J, et al. 2022 Nat. Biotechnol. 40 606Google Scholar

    [19]

    Huang X S, Fan J C, Li L J, Liu H S, Wu R L, Wu Y, Wei L S, Mao H, Lal A, Xi P, Tang L Q, Zhang Y F, Liu Y M, Tan S, Chen L Y 2018 Nat. Biotechnol. 36 451Google Scholar

    [20]

    Li D, Shao L, Chen B C, Zhang X, Zhang M, Moses B, Milkie D E, Beach J R, Hammer J A, Pasham M, Kirchhausen T, Baird M A, Davidson M W, Xu P, Betzig E 2015 Science 349 aab3500Google Scholar

    [21]

    Kner P, Chhun B B, Griffis E R, Winoto L, Gustafsson M G L 2009 Nat. Methods 6 339Google Scholar

    [22]

    Wen G, Li S M, Wang L B, et al. 2021 Light Sci. Appl. 10 70Google Scholar

    [23]

    Luo Z W, Wu G, Kong M, Chen Z, Zhuang Z F, Fan J C, Chen T S 2023 Photonics Res. 11 887Google Scholar

    [24]

    Fan J C, Huang X S, Li L, Tan S, Chen L 2019 Biophys. Rep. 5 80Google Scholar

    [25]

    Sun H, Zhang C, Ma Y, Du M, Chen T S 2019 Biomed. Signal Process. Control 53 101585Google Scholar

  • 图 1  双通道SISR-FRET系统光路示意图

    Figure 1.  Schematic diagram of dual-channel SISR-FRET system.

    图 2  双通道SISR-FRET的算法流程图

    Figure 2.  Flow chart of dual-channel SISR-FRET algorithm.

    图 3  双通道SISR-FRET与单通道SISR-FRET时序图对比 (a)单通道SISR-FRET在一个FRET采集周期的时序图; (b)双通道SISR-FRET相同周期的时序图

    Figure 3.  Comparison of timing sequence of dual-channel SISR-FRET and single-channel SISR-FRET: (a) Timing sequence of single-channel SISR-FRET in one FRET acquisition cycle; (b) timing sequence of dual-channel SISR-FRET in the same cycle.

    图 4  双通道SISR-FRET通道对准效果 (a) DD通道和AA通道成像结果的伪彩图, 绿色为DD通道, 红色为AA通道;(b)未经过算法对准的DD通道和AA通道成像结果叠加图; (c)经过仿射变换矩阵对准的DD通道和AA通道成像结果叠加图. 比例尺: 2 μm

    Figure 4.  Dual-channel SISR-FRET alignment results: (a) Pseudo-color image of DD channel and AA channel imaging results, green is DD channel, red is AA channel; (b) overlay of the imaging results of DD channel and AA channel without algorithm alignment; (c) overlay of DD channel and AA channel imaging results after affine transformation matrix alignment. Scale bar: 2 μm.

    图 5  双通道SISR-FRET成像系统对ActA-G17 M样本成像结果 (a)—(c) DD, DA, AA通道宽场成像结果; (d)—(f) DD, DA, AA通道超分辨成像结果. 比例尺: 2 μm

    Figure 5.  Imaging results of the dual-channel SISR-FRET imaging system for the ActA-G17M sample: (a)–(c) Wide-field imaging results in the DD, DA, and AA channels; (d)–(f) super-resolution imaging results in the DD, DA, and AA channels. Scale bar: 2 μm.

    图 6  双通道SISR-FRET成像定量FRET分析结果对比 (a)宽场FRET和超分辨FRET效率ED的伪彩图; (b)图(a)中结果的统计直方图; (c)宽场FRET和超分辨FRET受供体浓度比 RC的伪彩图; (d) 图(c)中结果的统计直方图. 比例尺: 2 μm

    Figure 6.  Comparison of quantitative FRET analysis results from dual-channel SISR-FRET imaging: (a) Pseudo-color map of ED for wide-field FRET and super-resolution FRET; (b) corresponding statistical histograms; (c) pseudo-color plot of RC for wide-field FRET and super-resolution FRET; (d) corresponding statistical histograms. Scale bars: 2 μm.

    图 7  双通道SISR-FRET分辨率提升的定量分析 (a) 宽场FRET效率ED的伪彩图和DD通道灰度图像的重叠结果; (b) SISR-FRET效率ED的伪彩图和DD通道灰度图像的重叠结果; (c) 宽场FRET与SISR-FRET中DD通道灰度图像的局部细节对比; (d) 宽场FRET与SISR-FRET中效率ED的伪彩图的局部细节对比; (e), (f) 图 (c)和图 (d)中划线位置的横切面强度图. 比例尺: 2 μm

    Figure 7.  Quantitative analysis of dual-channel SISR-FRET resolution enhancement: (a) The merge of intensity and ED map images of wide-field FRET; (b) the merge of intensity and ED map images of SISR-FRET; (c) partly enlarged view of intensity images of wide-field FRET and SISR-FRET in the DD channel; (d) partly enlarged view of ED map images of wide-field FRET and SISR-FRET; (e), (f) normalized intensity and FRET profiles along the marked lines in (c) and (d). Scale bars: 2 μm.

  • [1]

    Rao V S, Srinivas K, Sujini G N, Kumar G N S 2014 Int. J. Proteomics 2014 1

    [2]

    Acuner Ozbabacan S E, Engin H B, Gursoy A, Keskin O 2011 Protein Eng. Des. Sel. 24 635Google Scholar

    [3]

    Xing S, Wallmeroth N, Berendzen K W, Grefen C 2016 Plant Physiol. 171 727

    [4]

    Algar W R, Hildebrandt N, Vogel S S, Medintz I L 2019 Nat. Methods 16 815Google Scholar

    [5]

    Jares-Erijman E A, Jovin T M 2003 Nat. Biotechnol. 21 1387Google Scholar

    [6]

    Ben-Johny M, Yue D N, Yue D T 2016 Nat. Commun. 7 13709Google Scholar

    [7]

    Chen H C, Sun B N, Sun H, Xu L J, Wu G H, Tu Z, Cheng X C, Fan X H, Mai Z H, Tang Q L, Wang X P, Chen T S 2021 Cell Death Discov. 7 363Google Scholar

    [8]

    Sun B N, Chen H C, Wang X P, Chen T S 2023 Cell Death Discov. 9 37

    [9]

    Yang F F, Qu W F, Du M Y, Mai Z Y, Wang B, Ma Y Y, Wang X P, Chen T S 2020 Cell. Mol. Life Sci. 77 2387Google Scholar

    [10]

    Szalai A M, Zaza C, Stefani F D 2021 Nanoscale 13 18421Google Scholar

    [11]

    Szabó Á, Szendi-Szatmári T, Szöllősi J, Nagy P 2020 Methods Appl. Fluoresc. 8 032003Google Scholar

    [12]

    Grecco H E, Verveer P J 2011 ChemPhysChem 12 484Google Scholar

    [13]

    Deußner-Helfmann N S, Auer A, Strauss M T, Malkusch S, Dietz M S, Barth H D, Jungmann R, Heilemann M 2018 Nano Lett. 18 4626Google Scholar

    [14]

    Tardif C, Nadeau G, Labrecque S, Côté D, Lavoie-Cardinal F 2019 Neurophotonics 6 1

    [15]

    Szalai A M, Siarry B, Lukin J, Giusti S, Unsain N, Cáceres A, Steiner F, Tinnefeld P, Refojo D, Jovin T M, Stefani F D 2021 Nano Lett. 21 2296Google Scholar

    [16]

    Liu Z, Luo Z W, Chen H C, Yin A, Sun H, Zhuang Z F, Chen T S 2022 Cytom. Part A 101 264Google Scholar

    [17]

    Zhao T Y, Wang Z J, Cai Y N, Liang Y S, Wang SW, Zhang J X, Chen T S, Lei M 2023 Opt. Lasers Eng. 167 107606Google Scholar

    [18]

    Zhao W S, Zhao S Q, Li L J, et al. 2022 Nat. Biotechnol. 40 606Google Scholar

    [19]

    Huang X S, Fan J C, Li L J, Liu H S, Wu R L, Wu Y, Wei L S, Mao H, Lal A, Xi P, Tang L Q, Zhang Y F, Liu Y M, Tan S, Chen L Y 2018 Nat. Biotechnol. 36 451Google Scholar

    [20]

    Li D, Shao L, Chen B C, Zhang X, Zhang M, Moses B, Milkie D E, Beach J R, Hammer J A, Pasham M, Kirchhausen T, Baird M A, Davidson M W, Xu P, Betzig E 2015 Science 349 aab3500Google Scholar

    [21]

    Kner P, Chhun B B, Griffis E R, Winoto L, Gustafsson M G L 2009 Nat. Methods 6 339Google Scholar

    [22]

    Wen G, Li S M, Wang L B, et al. 2021 Light Sci. Appl. 10 70Google Scholar

    [23]

    Luo Z W, Wu G, Kong M, Chen Z, Zhuang Z F, Fan J C, Chen T S 2023 Photonics Res. 11 887Google Scholar

    [24]

    Fan J C, Huang X S, Li L, Tan S, Chen L 2019 Biophys. Rep. 5 80Google Scholar

    [25]

    Sun H, Zhang C, Ma Y, Du M, Chen T S 2019 Biomed. Signal Process. Control 53 101585Google Scholar

  • [1] Gu Tong-Kai, Wang Lan-Lan, Guo Yang, Jiang Wei-Tao, Shi Yong-Sheng, Yang Shuo, Chen Jin-Ju, Liu Hong-Zhong. Realization of reconfigurable super-resolution imaging by liquid microlens arrays integrated on light disk. Acta Physica Sinica, 2023, 72(9): 099501. doi: 10.7498/aps.72.20222251
    [2] Fan Qin-Kai, Yang Chen-Guang, Hu Shu-Xin, Xu Chun-Hua, Li Ming, Lu Ying. Single-molecular surface-induced fluorescence attenuation based on thermal reduced graphene oxide. Acta Physica Sinica, 2023, 72(14): 147801. doi: 10.7498/aps.72.20230450
    [3] Gao Zhao-Lin, Liu Rui-Hua, Wen Kai, Ma Ying, Li Jian-Lang, Gao Peng. Phase/fluorescence dual-mode microscopy imaging based on structured light illumination. Acta Physica Sinica, 2022, 71(24): 244203. doi: 10.7498/aps.71.20221518
    [4] Wang Jia-Lin, Yan Wei, Zhang Jia, Wang Lu-Wei, Yang Zhi-Gang, Qu Jun-Le. New advances in the research of stimulated emission depletion super-resolution microscopy. Acta Physica Sinica, 2020, 69(10): 108702. doi: 10.7498/aps.69.20200168
    [5] Qian Jia, Dang Shi-Pei, Zhou Xing, Dan Dan, Wang Zhao-Jun, Zhao Tian-Yu, Liang Yan-Sheng, Yao Bao-Li, Lei Ming. Fast structured illumination three-dimensional color microscopic imaging method based on Hilbert-transform. Acta Physica Sinica, 2020, 69(12): 128701. doi: 10.7498/aps.69.20200352
    [6] Ma Dong-Fei, Hou Wen-Qing, Xu Chun-Hua, Zhao Chun-Yu, Ma Jian-Bing, Huang Xing-Yuan, Jia Qi, Ma Lu, Liu Cong, Li Ming, Lu Ying. Investigation of structure and dynamics of α-synuclein on membrane by quenchers-in-a-liposome fluorescence resonance energy transfer method. Acta Physica Sinica, 2020, 69(3): 038701. doi: 10.7498/aps.69.20191607
    [7] Li Dong-Yang, Zhang Yuan-Xian, Ou Yong-Xiong, Pu Xiao-Yun. Optofluidic fluorescence resonance energy transfer lasing in a polydimethylsiloxane microfluidic channel. Acta Physica Sinica, 2019, 68(5): 054203. doi: 10.7498/aps.68.20181696
    [8] Yan Bo, Chen Li, Chen Shuang, Li Meng, Yin Yi-Min, Zhou Jiang-Ning. Structured illumination for two-dimensional laser induced fluorescence imaging to eliminate stray light interference. Acta Physica Sinica, 2019, 68(21): 218701. doi: 10.7498/aps.68.20190977
    [9] Fan Qi-Meng, Yin Cheng-You. Super-resolution imaging of high-contrast target in elctromagnetic inverse scattering. Acta Physica Sinica, 2018, 67(14): 144101. doi: 10.7498/aps.67.20180266
    [10] Hu Rui-Xuan, Pan Bing-Yang, Yang Yu-Long, Zhang Wei-Hua. Brief retrospect of super-resolution optical microscopy techniques. Acta Physica Sinica, 2017, 66(14): 144209. doi: 10.7498/aps.66.144209
    [11] Li Shao-Dong, Chen Yong-Bin, Liu Run-Hua, Ma Xiao-Yan. Analysis on the compressive sensing based narrow-band radar super resolution imaging mechanism of rapidly spinning targets. Acta Physica Sinica, 2017, 66(3): 038401. doi: 10.7498/aps.66.038401
    [12] Zhao Guang-Yuan, Zheng Cheng, Fang Yue, Kuang Cui-Fang, Liu Xu. Progress of point-wise scanning superresolution methods. Acta Physica Sinica, 2017, 66(14): 148702. doi: 10.7498/aps.66.148702
    [13] Zhang Chong-Lei, Xin Zi-Qiang, Min Chang-Jun, Yuan Xiao-Cong. Research progress of plasmonic structure illumination microscopy. Acta Physica Sinica, 2017, 66(14): 148701. doi: 10.7498/aps.66.148701
    [14] Zhao Tian-Yu, Zhou Xing, Dan Dan, Qian Jia, Wang Zhao-Jun, Lei Ming, Yao Bao-Li. Polarization control methods in structured illumination microscopy. Acta Physica Sinica, 2017, 66(14): 148704. doi: 10.7498/aps.66.148704
    [15] Li Shao-Dong, Chen Wen-Feng, Yang Jun, Ma Xiao-Yan. A fast two dimensional joint linearized bregman iteration algorithm for super-resolution inverse synthetic aperture radar imaging at low signal-to-noise ratios. Acta Physica Sinica, 2016, 65(3): 038401. doi: 10.7498/aps.65.038401
    [16] He Zhi-Cong, Li Fang, Li Mu-Ye, Wei Lai. Fluorescence resonance energy transfer between CdTe quantum dots and copper phthalocyanine. Acta Physica Sinica, 2015, 64(4): 046802. doi: 10.7498/aps.64.046802
    [17] Li Long-Zhen, Yao Xu-Ri, Liu Xue-Feng, Yu Wen-Kai, Zhai Guang-Jie. Super-resolution ghost imaging via compressed sensing. Acta Physica Sinica, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [18] Zhi Shao-Tao, Zhang Hai-Jun, Zhang Dong-Xian. Super-resolution optical microscopic imaging method based on annular illumination with high numerical aperture. Acta Physica Sinica, 2012, 61(2): 024207. doi: 10.7498/aps.61.024207
    [19] Lu Jing, Li Hao, He Yi, Shi Guo-Hua, Zhang Yu-Dong. Superresolution in adaptive optics confocal scanning laser ophthalmoscope. Acta Physica Sinica, 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [20] Zhao Wei-Qian, Chen Shan-Shan, Feng Zheng-De. A confocal measurement method based on superresolution image restoration and shaped annular beam. Acta Physica Sinica, 2006, 55(7): 3363-3367. doi: 10.7498/aps.55.3363
Metrics
  • Abstract views:  3470
  • PDF Downloads:  63
  • Cited By: 0
Publishing process
  • Received Date:  25 May 2023
  • Accepted Date:  28 June 2023
  • Available Online:  07 July 2023
  • Published Online:  20 October 2023

/

返回文章
返回