Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structured illumination for two-dimensional laser induced fluorescence imaging to eliminate stray light interference

Yan Bo Chen Li Chen Shuang Li Meng Yin Yi-Min Zhou Jiang-Ning

Yan Bo, Chen Li, Chen Shuang, Li Meng, Yin Yi-Min, Zhou Jiang-Ning. Structured illumination for two-dimensional laser induced fluorescence imaging to eliminate stray light interference. Acta Phys. Sin., 2019, 68(21): 218701. doi: 10.7498/aps.68.20190977
Citation: Yan Bo, Chen Li, Chen Shuang, Li Meng, Yin Yi-Min, Zhou Jiang-Ning. Structured illumination for two-dimensional laser induced fluorescence imaging to eliminate stray light interference. Acta Phys. Sin., 2019, 68(21): 218701. doi: 10.7498/aps.68.20190977

Structured illumination for two-dimensional laser induced fluorescence imaging to eliminate stray light interference

Yan Bo, Chen Li, Chen Shuang, Li Meng, Yin Yi-Min, Zhou Jiang-Ning
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Laser sheet imaging, also called planar laser imaging, is one of the most versatile optical imaging techniques and has been frequently used in several different areas. However, when applied to the limited operating space and strong light scattering media, the light originating from indirect reflections, multiple scattering and surrounding backgrounds can produce error especially in intensity-ratio based measurements.This work is motivated by these challenges, with the overall aim of making laser sheet imaging technique applicable for the study of eliminating the stray light interference. Therefore a novel two-dimensional imaging technique named structured laser illumination planar imaging (SLIPI) is developed based on planar laser imaging but uses a sophisticated illumination scheme i.e. spatial intensity modulation, to differentiate between the intensity contribution arising from useful signals and that from stray light. By recording and dealing with images, the SLIPI method can suppress the diffuse light and retain the useful signals.In this paper, we first use the MATLAB software to simulate the phase-shift SLIPI method, and the results show that the stray light interference can be eliminated completely. Furthermore, the phase-shift SLIPI is combined with the liquid solution (Rhodamine B solution) laser induced fluorescence (LIF) approach to imagine the concentration distribution. By recording three images, between which this encoding is changed noticeably only for the useful LIF signals, the phase-shift SLIPI method is evidenced to be able to remove the diffuse light contribution, thus improving and enhancing the visualization quality. The instantaneous SLIPI images of rapidly moving samples, a key feature to study dynamic liquid solution diffusion behavior, are also acquired. The lock-in amplifier SLIPI technique is then experimentally studied under Rhodamine B diffused solution, and the phase-shift SLIPI method can remove the unwanted background interferences and achieve the significant improvements in terms of pronounced concentration distribution within the Rhodamine B solution.The SLIPI technique is relatively inexpensive: the cost does not exceed the cost of an ordinary laser sheet arrangement noticeably, and it can combine with several other linear imaging techniques, such as Rayleigh scattering, particle image velocimetry and laser-induced phosphorescence.
      Corresponding author: Chen Shuang, chenshuang827@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 91641118) and the Fenglei Youth Innovation Fund of CARDC (Grant Nos. FLYIF20160017, PJD20180131)
    [1]

    Gal P L, Farrugia N, Greenhalg D A 1999 Opt. Laser Technol. 31 75Google Scholar

    [2]

    Driscoll K D, Sick V, Gray C 2003 Exp. Fluids 35 112Google Scholar

    [3]

    Schultz C, Sick V 2005 Prog. Energ. Combust. 31 75Google Scholar

    [4]

    Adrian R J 2005 Exp. Fluids 39 159Google Scholar

    [5]

    陈爽, 苏铁, 杨富荣, 张龙, 郑尧邦 2013 中国光学快报 11 65

    Chen S, Su T, Yang F R, Zhang L, Zheng Y B 2013 Chin. Opt. Lett. 11 65

    [6]

    万文博, 华灯鑫, 乐静, 刘美霞, 曹宁 2013 物理学报 62 190601Google Scholar

    Wan W B, Hua D X, Le J, Liu M X, Cao N 2013 Acta Phys. Sin. 62 190601Google Scholar

    [7]

    Limbach C M, Miles R B 2017 AIAA J. 55 112Google Scholar

    [8]

    Fourguette D C, Zurn R M, Long M B 1986 Combust. Sci. Technol. 44 307Google Scholar

    [9]

    徐春娇, 杨洪远, 杨明伟 2010 红外与激光工程 39 1143Google Scholar

    Xu C J, Yang Y H, Yang M W 2010 Infrared Laser Eng. 39 1143Google Scholar

    [10]

    Allison S W, Gilles G T 1997 Rev. Sci. Instrum. 68 2615

    [11]

    Elliott G S, Glumac N, Carter C D 2001 Meas. Sci. Tech. 12 452Google Scholar

    [12]

    Barlow R S, Wang G H, Filho P A, Sweeney M S 2009 P. Combust. Inst. 32 945Google Scholar

    [13]

    Omrane A, Juhlin G, Ossler F 2004 Appl. Optics 43 3523Google Scholar

    [14]

    Kitzhofer J, Nonn T, Brucker C 2011 Exp. Fluids 51 1471

    [15]

    Berrocal E, Churmakov D Y, Romanov V P, Jermy M C, Meglinski I V 2005 Appl. Opt. 44 2519Google Scholar

    [16]

    Kristensson E, Richter M, Pettersson S G, Aldén M, Andersson E S 2008 Appl. Opt. 47 3927Google Scholar

    [17]

    Kristensson E, Berrocal E, Richter M, Aldén M 2010 Atomization Sprays 20 337Google Scholar

    [18]

    Kristensson E, Berrocal E, Aldén M 2011 Opt. Lett. 36 1656Google Scholar

    [19]

    Kristensson E, Berrocal E, Richter M, Pettersson S G, Aldén M 2008 Opt. Lett. 33 2752Google Scholar

    [20]

    Kristensson E, Bood J, Alden M, Nordström E, Zhu J, Huldt S, Bengtsson P E, Nilsson H, Berrocal E, Ehn A 2014 Opt. Express 22 7711Google Scholar

    [21]

    Kristensson E, Araneo L, Berrocal E, Manin J, Richter M, Aldén M, Linne M 2011 Opt. Express 19 13647Google Scholar

    [22]

    Berrocal E, Kristensson E, Richter M, Linne M, Aldén M 2008 Opt. Express 16 17870Google Scholar

    [23]

    Wellander R, Berrocal E, Kristensson E, Richter M, Aldén M 2011 Meas. Sci. Technol. 22 125303Google Scholar

    [24]

    Aldén M, Bood J, Li Z S, Richter M 2011 P. Combust. Inst. 33 69Google Scholar

    [25]

    Kristensson E, Ehn A, Bood H, Aldén M 2015 P. Combust. Inst. 35 3689Google Scholar

    [26]

    Yan B, Su T, Chen S, Chen L, Yang F R, Tu X B, Mu J H 2017 China National Symposium on Combustion Nanjing, China, October 13−15, 2017 p489

    期刊类型引用(5)

    1. 黄喆,赵世艺,周卫斌,徐叶倩,沈小玲. 面向盾构导向激光标靶的抗杂光算法研究. 仪器仪表学报. 2022(04): 172-181 . 百度学术
    2. 李春光,黄成强,林朝晖. 三维激光扫描技术下杂散光大数据预处理系统设计. 激光杂志. 2021(02): 170-175 . 百度学术
    3. 朱家健,万明罡,吴戈,闫博,田轶夫,冯戎,孙明波. 激光诱导荧光技术燃烧诊断的研究进展. 中国激光. 2021(04): 78-110 . 百度学术
    4. 何睿. 基于激光成像景区三维动态视景模拟系统. 激光杂志. 2021(06): 189-192 . 百度学术
    5. 马玉芳,桑杰,白翠梅. 基于振幅光栅的数字全息光学成像系统. 激光杂志. 2020(09): 165-168 . 百度学术

    其他类型引用(0)

  • 图 1  旋转玻璃片改变激光光束位置示意图

    Figure 1.  Diagram of laser beam transmission changed by rotating glass sheet.

    图 2  基于结构光照明技术的激光诱导发光图像测量装置(A1, 5×扩束镜; RG, Ronchi光栅; AR, 自动旋转台; GS, 玻璃片(5.3 mm); LS, 片光系统; A, 光阑; RB, 罗丹明B溶液; PF, 滤光片)

    Figure 2.  LIF imaging setup based on the SLIPI technique (A1, 5 × beam expander; RG, Ronchi grating; AR, automatic rotary table; GS, glass sheet (5.3 mm); LS, light system; A, aperture slot; RB, Rhodamine B solution; PF, fliter).

    图 3  PS-SLIPI方法仿真计算全过程 (a) 调制振幅项A的值; (b) 无光栅调制时的强度值SNG = A(R) + B1(R) + B2(R); (c) 光栅调制后的强度值SC; (d) LA-SLIPI计算后的振幅相对误差值dA/A = (A1A)/A, 截止频率fc = 0.005 Hz; (e) PS-SLIPI计算后的振幅误差值dA/A = AAA, n = 3; (f) PS-SLIPI计算后的干扰分量误差值dB = BBB, n = 3

    Figure 3.  Simulation process of the PS-SLIPI method: (a) The modulated amplitude value, A; (b) the intensity without grating modulation, SNG = A(R) + B1(R) + B2(R); (c) the intensity with grating modulation, SC; (d) the relative error of modulated amplitude value, A, calculated by LA-SLIPI method, dA = (A1A)/A, fc = 0.005 Hz; (e) the error of modulated amplitude value, A, calculated by PS-SLIPI method, dA = AAA, n = 3; (f) the error of interference components calculated by PS-SLIPI method, dB = BBB, n = 3.

    图 4  PS-SLIPI方法的光栅条纹移动图像

    Figure 4.  Grating fringe changing images based on phase shifting SLIPI method.

    图 5  (a) 三种不同测试环境下的原始LIF图像; (b) 光栅调制LIF图像; (c) PS-SLIPI方法处理后的调制振幅(A)分布图像

    Figure 5.  (a) Conventional (raw data) LIF images without grating modulation in three different measurement cases; (b) LIF images with grating modulation; (c) images of modulated amplitude value, A, calculated by phase shifting SLIPI method.

    图 6  (a) 不同测量时刻下的光栅调制LIF瞬态图像; (b) LA-SLIPI方法处理后的调制振幅(A)分布的瞬态图像

    Figure 6.  (a) LIF images with grating modulation; (b) images of modulated amplitude value, A, calculated by LA-SLIPI method.

    表 1  两种SLIPI技术实验参数

    Table 1.  Experimental parameters of two SLIPI technique.

    背景分类激光输出能量相机曝光时间相机增益罗丹明B溶液浓度图像正弦调制周期/像素
    相位移动SLIPI技术Case 1100 mW0.025 s30稳态溶液:1 × 107 mol/L0.058593
    Case 2100 mW0.025 s30稳态溶液:1 × 107 mol/L0.058593
    Case 3100 mW0.025 s30稳态溶液:1 × 107 mol/L0.058593
    基于锁相放大原理的SLIPI技术Case 4100 mW0.025 s30非稳态扩散溶液: 将1 × 106 mol/L溶液注入到1 × 107 mol/L溶液. 0.144536
    DownLoad: CSV
  • [1]

    Gal P L, Farrugia N, Greenhalg D A 1999 Opt. Laser Technol. 31 75Google Scholar

    [2]

    Driscoll K D, Sick V, Gray C 2003 Exp. Fluids 35 112Google Scholar

    [3]

    Schultz C, Sick V 2005 Prog. Energ. Combust. 31 75Google Scholar

    [4]

    Adrian R J 2005 Exp. Fluids 39 159Google Scholar

    [5]

    陈爽, 苏铁, 杨富荣, 张龙, 郑尧邦 2013 中国光学快报 11 65

    Chen S, Su T, Yang F R, Zhang L, Zheng Y B 2013 Chin. Opt. Lett. 11 65

    [6]

    万文博, 华灯鑫, 乐静, 刘美霞, 曹宁 2013 物理学报 62 190601Google Scholar

    Wan W B, Hua D X, Le J, Liu M X, Cao N 2013 Acta Phys. Sin. 62 190601Google Scholar

    [7]

    Limbach C M, Miles R B 2017 AIAA J. 55 112Google Scholar

    [8]

    Fourguette D C, Zurn R M, Long M B 1986 Combust. Sci. Technol. 44 307Google Scholar

    [9]

    徐春娇, 杨洪远, 杨明伟 2010 红外与激光工程 39 1143Google Scholar

    Xu C J, Yang Y H, Yang M W 2010 Infrared Laser Eng. 39 1143Google Scholar

    [10]

    Allison S W, Gilles G T 1997 Rev. Sci. Instrum. 68 2615

    [11]

    Elliott G S, Glumac N, Carter C D 2001 Meas. Sci. Tech. 12 452Google Scholar

    [12]

    Barlow R S, Wang G H, Filho P A, Sweeney M S 2009 P. Combust. Inst. 32 945Google Scholar

    [13]

    Omrane A, Juhlin G, Ossler F 2004 Appl. Optics 43 3523Google Scholar

    [14]

    Kitzhofer J, Nonn T, Brucker C 2011 Exp. Fluids 51 1471

    [15]

    Berrocal E, Churmakov D Y, Romanov V P, Jermy M C, Meglinski I V 2005 Appl. Opt. 44 2519Google Scholar

    [16]

    Kristensson E, Richter M, Pettersson S G, Aldén M, Andersson E S 2008 Appl. Opt. 47 3927Google Scholar

    [17]

    Kristensson E, Berrocal E, Richter M, Aldén M 2010 Atomization Sprays 20 337Google Scholar

    [18]

    Kristensson E, Berrocal E, Aldén M 2011 Opt. Lett. 36 1656Google Scholar

    [19]

    Kristensson E, Berrocal E, Richter M, Pettersson S G, Aldén M 2008 Opt. Lett. 33 2752Google Scholar

    [20]

    Kristensson E, Bood J, Alden M, Nordström E, Zhu J, Huldt S, Bengtsson P E, Nilsson H, Berrocal E, Ehn A 2014 Opt. Express 22 7711Google Scholar

    [21]

    Kristensson E, Araneo L, Berrocal E, Manin J, Richter M, Aldén M, Linne M 2011 Opt. Express 19 13647Google Scholar

    [22]

    Berrocal E, Kristensson E, Richter M, Linne M, Aldén M 2008 Opt. Express 16 17870Google Scholar

    [23]

    Wellander R, Berrocal E, Kristensson E, Richter M, Aldén M 2011 Meas. Sci. Technol. 22 125303Google Scholar

    [24]

    Aldén M, Bood J, Li Z S, Richter M 2011 P. Combust. Inst. 33 69Google Scholar

    [25]

    Kristensson E, Ehn A, Bood H, Aldén M 2015 P. Combust. Inst. 35 3689Google Scholar

    [26]

    Yan B, Su T, Chen S, Chen L, Yang F R, Tu X B, Mu J H 2017 China National Symposium on Combustion Nanjing, China, October 13−15, 2017 p489

  • [1] Luo Ze-Wei, Wu Ge, Chen Zhi, Deng Chi-Nan, Wan Rong, Yang Tao, Zhuang Zheng-Fei, Chen Tong-Sheng. Dual-channel structured illumination super-resolution quantitative fluorescence resonance energy transfer imaging. Acta Physica Sinica, 2023, 72(20): 208701. doi: 10.7498/aps.72.20230853
    [2] Gao Zhao-Lin, Liu Rui-Hua, Wen Kai, Ma Ying, Li Jian-Lang, Gao Peng. Phase/fluorescence dual-mode microscopy imaging based on structured light illumination. Acta Physica Sinica, 2022, 71(24): 244203. doi: 10.7498/aps.71.20221518
    [3] Flat-field multiplexed multifocal structured illumination super-resolution microscopy. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211712
    [4] Liu Kang, He Tao, Liu Tao, Li Guo-Qing, Tian Bo, Wang Jia-Yi, Yang Shu-Ming. Effect of laser illumination conditions on focusing performance of super-oscillatory lens. Acta Physica Sinica, 2020, 69(18): 184215. doi: 10.7498/aps.69.20200577
    [5] Qian Jia, Dang Shi-Pei, Zhou Xing, Dan Dan, Wang Zhao-Jun, Zhao Tian-Yu, Liang Yan-Sheng, Yao Bao-Li, Lei Ming. Fast structured illumination three-dimensional color microscopic imaging method based on Hilbert-transform. Acta Physica Sinica, 2020, 69(12): 128701. doi: 10.7498/aps.69.20200352
    [6] Zhao Tian-Yu, Zhou Xing, Dan Dan, Qian Jia, Wang Zhao-Jun, Lei Ming, Yao Bao-Li. Polarization control methods in structured illumination microscopy. Acta Physica Sinica, 2017, 66(14): 148704. doi: 10.7498/aps.66.148704
    [7] Zhang Chong-Lei, Xin Zi-Qiang, Min Chang-Jun, Yuan Xiao-Cong. Research progress of plasmonic structure illumination microscopy. Acta Physica Sinica, 2017, 66(14): 148701. doi: 10.7498/aps.66.148701
    [8] Song Yan-Song, Yang Jian-Feng, Li Fu, Ma Xiao-Long, Wang Hong. Method of controlling optical surface roughness based on stray light requirements. Acta Physica Sinica, 2017, 66(19): 194201. doi: 10.7498/aps.66.194201
    [9] Jing Min, Hua Deng-Xin, Le Jing. Simulation of fluorescence lidar for detecting oil slick. Acta Physica Sinica, 2016, 65(7): 070704. doi: 10.7498/aps.65.070704
    [10] Li Mu-Ye, Li Fang, Wei Lai, He Zhi-Cong, Zhang Jun-Pei, Han Jun-Bo, Lu Pei-Xiang. Fluorescence resonance energy transfer in a aqueous system of CdTe quantum dots and Rhodamine B with two-photon excitation. Acta Physica Sinica, 2015, 64(10): 108201. doi: 10.7498/aps.64.108201
    [11] Wan Wen-Bo, Hua Deng-Xin, Le Jing, Yan Zhe, Zhou Chun-Yan. Study of plant fluorescence properties based on laser-induced chlorophyll fluorescence lifetime imaging technology. Acta Physica Sinica, 2015, 64(19): 190702. doi: 10.7498/aps.64.190702
    [12] Wan Wen-Bo, Hua Deng-Xin, Le Jing, Liu Mei-Xia, Cao Ning. Laser-induced chlorophyll fluorescence lifetime measurement and characteristic analysis. Acta Physica Sinica, 2013, 62(19): 190601. doi: 10.7498/aps.62.190601
    [13] Yu Miao, Gao Jin-Song, Zhang Jian, Xu Nian-Xi. Suppression of the stray light of 2-dimensional gratings combined with an array of periodic slit. Acta Physica Sinica, 2013, 62(20): 204208. doi: 10.7498/aps.62.204208
    [14] Li Gang, Xu Yan-Ji, Mu Ke-Jin, Nie Chao-Qun, Zhu Jun-Qiang, Zhang Yi, Li Han-Ming. Application of planar laser induced fluorescence in the investigation of the stagger electrode dielectric barrier discharge plasma. Acta Physica Sinica, 2008, 57(10): 6444-6449. doi: 10.7498/aps.57.6444
    [15] Li Hong-Bin, Liu Wen-Qing, Zhang Yu-Jun, Ding Zhi-Qun, Zhao Nan-Jing, Wei Qing-Nong, Wang Yu-Ping, Yang Li-Shu. A method of characteristic LIF spectral signatures separation based on radial basis function networks. Acta Physica Sinica, 2005, 54(9): 4451-4457. doi: 10.7498/aps.54.4451
    [16] Wang Qian-Qian, Wei Guang-Hui. . Acta Physica Sinica, 2002, 51(5): 1031-1034. doi: 10.7498/aps.51.1031
    [17] WANG CHU-JI, CHEN JUN, ZHANG TAO, ZHANG LI-MIN, DAI JING-HUA, CHEN CONG-XIANG, MA XING-XIAO. ROTATIONAL ANALYSES OF LASER INDUCED FLUORESCENCE EXCITATION SPECTRA OF THE SUPERSONIC JET-COOLED SO2( 1A2— 1A1) SYSTEM. Acta Physica Sinica, 1998, 47(8): 1258-1264. doi: 10.7498/aps.47.1258
    [18] CHEN YANG, LU QING-ZHENG, WANG DONG-QING, SHEN LIU-SI, WANG HONG-FEI, ZHANG YUN-WU, YU SHU-QIN, MA XING-XIAO. LASER-INDUCED FLUORESCENCE EXCITATION SPECTRUM OF CCl2 COOLED IN THE SUPERSONIC JET. Acta Physica Sinica, 1991, 40(6): 885-890. doi: 10.7498/aps.40.885
    [19] LU QING-ZHENG, CHEN YANG, TANG SONG-BAI, MA XING-XIAO. LASER-INDUCED FLUORESCENCE EXCIATION SPECTRUM OF OXALYL CHLORIDE. Acta Physica Sinica, 1991, 40(6): 878-884. doi: 10.7498/aps.40.878
    [20] GAO WEN-BIN, SHEN YU-QI, J. H?GER, W. KRIEGER. VIBRATIONAL ENERGY TRANSFER STUDY OF DICHLOROMETHANE (CH2Cl2) BY LASER INDUCED FLUORESCENCE METHOD. Acta Physica Sinica, 1985, 34(10): 1261-1269. doi: 10.7498/aps.34.1261
  • 期刊类型引用(5)

    1. 黄喆,赵世艺,周卫斌,徐叶倩,沈小玲. 面向盾构导向激光标靶的抗杂光算法研究. 仪器仪表学报. 2022(04): 172-181 . 百度学术
    2. 李春光,黄成强,林朝晖. 三维激光扫描技术下杂散光大数据预处理系统设计. 激光杂志. 2021(02): 170-175 . 百度学术
    3. 朱家健,万明罡,吴戈,闫博,田轶夫,冯戎,孙明波. 激光诱导荧光技术燃烧诊断的研究进展. 中国激光. 2021(04): 78-110 . 百度学术
    4. 何睿. 基于激光成像景区三维动态视景模拟系统. 激光杂志. 2021(06): 189-192 . 百度学术
    5. 马玉芳,桑杰,白翠梅. 基于振幅光栅的数字全息光学成像系统. 激光杂志. 2020(09): 165-168 . 百度学术

    其他类型引用(0)

Metrics
  • Abstract views:  9488
  • PDF Downloads:  64
  • Cited By: 5
Publishing process
  • Received Date:  24 June 2019
  • Accepted Date:  22 July 2019
  • Available Online:  01 November 2019
  • Published Online:  05 November 2019

/

返回文章
返回