Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fast structured illumination three-dimensional color microscopic imaging method based on Hilbert-transform

Qian Jia Dang Shi-Pei Zhou Xing Dan Dan Wang Zhao-Jun Zhao Tian-Yu Liang Yan-Sheng Yao Bao-Li Lei Ming

Citation:

Fast structured illumination three-dimensional color microscopic imaging method based on Hilbert-transform

Qian Jia, Dang Shi-Pei, Zhou Xing, Dan Dan, Wang Zhao-Jun, Zhao Tian-Yu, Liang Yan-Sheng, Yao Bao-Li, Lei Ming
PDF
HTML
Get Citation
  • As a wide-field microscopy, structured illumination microscopy (SIM) enables super-resolution and three-dimensional (3D) imaging. It has recently received lots of attention due to the advantages of high spatial resolution, short image recording time, and less photobleaching and phototoxicity. The SIM has found numerous important applications in time-lapse imaging of living tissues and cellular structures in the field of biomedical science. Color information is an important physical quantity describing the characteristics of living creatures and reflects the differences in its microstructure and optical property to some extent. Although HSV (hue, saturation, value) color space based structured illumination full-color 3D optical sectioning technique can recover the full color information on the surface of the samples without color distortion. However, for each optical sectioning, three raw images with fixed phase shift are required to calculate the sectioning images by the rootmean square (RMS) algorithm. This will dramatically increase the data acquisition time and data storage space, especially for a large-scaled sample that needs image stitching strategy. The image processing progress operated in HSV color space need to run the RMS algorithm three times in each channel of HSV space for every section, and transform the images between RGB (red-green-blue) space and HSV space twice. This will absolutely extend the data processing time and put forward higher requirements for computer hardware and software for data storage and processing. To this end, in this paper, a fast 3D color optical sectioning SIM algorithm based on Hilbert-transform is proposed. The Hilbert-transform has proved to be a powerful tool in digital signal and image processing and has successfully applied to the SIM. Here, only two raw images with structured illumination are needed to reconstruct a full-color optical sectioned image for each slice. This fast 3D color sectioning method has the advantage of insensitivity to phase-shift error and has better adaptability to noise, high quality color sectioning images can be obtained under the phase-shift error or noise disturbed environment. The image acquisition data are reduced by 1/3 and the color optical sectioning reconstruction time is saved by about 28%, this new method effectively improves the efficiency and speed for 3D color imaging and will bring a wider application range for SIM.
      Corresponding author: Yao Bao-Li, yaobl@opt.ac.cn ; Lei Ming, ming.lei@mail.xjtu.edu.cn
    [1]

    Liu F, Dong B, Liu X, Zheng Y, Zi J 2009 Opt. Express 17 16183Google Scholar

    [2]

    Shevtsova E, Hansson C, Janzen D H, Kjærandsen J 2011 Proc. Natl. Acad. Sci. USA 108 668Google Scholar

    [3]

    Kinoshita S, Yoshioka S 2005 Chem. Phys. Chem. 6 1442Google Scholar

    [4]

    Conchello J A, Lichtman J W 2005 Nat. Methods 2 920Google Scholar

    [5]

    Helmchen F, Denk W 2005 Nat. Methods 2 932Google Scholar

    [6]

    Michels J 2007 J. Microscopy 227 1Google Scholar

    [7]

    Mahou P, Vermot J, Beaurepaire E, Supatto W 2014 Nat. Methods 11 600Google Scholar

    [8]

    Dunn K W, Sandoval R M, Kelly K J, et al. 2002 Am. J. Physiol.-Cell Physiol. 28 C905Google Scholar

    [9]

    Gustafsson M G 2000 J. Microscopy 198 82Google Scholar

    [10]

    Shao L, Kner P, Rego E H, Gustafsson M G 2011 Nat. Methods 8 1044Google Scholar

    [11]

    Kner P, Chhun B B, Griffis E R, Winoto L, Gustafsson M G 2009 Nat. Methods 6 339Google Scholar

    [12]

    Neil M A, Juškaitis R, Wilson T 1997 Opt. Lett. 22 1905Google Scholar

    [13]

    Thomas B, Momany M, Kner P 2013 J. Opt. 15 094004Google Scholar

    [14]

    Mertz J 2011 Nat. Methods 8 811Google Scholar

    [15]

    Dan D, Lei M, Yao B, et al. 2013 Sci. Rep. 3 1116Google Scholar

    [16]

    Karadaglić D, Wilson T 2008 Micron 39 808Google Scholar

    [17]

    Patorski K, Trusiak M, Tkaczyk T 2014 Opt. Express 22 9517Google Scholar

    [18]

    Dan D, Yao B, Lei M 2014 Chin. Sci. Bull. 59 1291Google Scholar

    [19]

    Zhou X, Lei M, Dan D, Yao B, Qian J, Yan S, Yang Y, Min J, Peng T, Ye T 2015 PloS One 10Google Scholar

    [20]

    Qian J, Lei M, Dan D, Yao B, Zhou X, Yang Y, Yan S, Min J, Yu X 2015 Sci. Rep. 5 14513Google Scholar

    [21]

    Qian J, Dang S, Wang Z, Zhou X, Dan D, Yao B, Tong Y, Yang H, Lu Y, Chen Y, Yang X, Bai M, Lei M 2019 Opt. Express 27 4845Google Scholar

    [22]

    周兴 2018 博士学位论文 (西安: 西安交通大学)

    Zhou X 2018 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University) (in Chinese)

    [23]

    Nayar S K, Nakagawa Y 1990 Proceedings, IEEE International Conference on Robotics and Automation Cincinnati, USA, May 13–18, 1990 p218

    [24]

    Nayar S K, Nakagawa Y 1994 IEEE Trans. Pattern Anal. Mach. Intell. 16 824Google Scholar

  • 图 1  HT-COS算法流程图和HSV-RMS算法流程图对比 (a) HT-COS算法流程图; (b) HSV-RMS算法流程图

    Figure 1.  Flowchart diagram comparison between HT-COS algorithm and HSV-RMS algorithm: (a) HT-COS algorithm; (b) HSV-RMS algorithm.

    图 2  相移误差对三维光切片图像的影响 (a)含有离焦背景的宽场图像; (b)结构光照明图像; (c)−(f)在不同的相移误差下, HSV-RMS算法所复原的彩色光切片图像; (g)−(j) 不同相移误差下, HT-COS算法所复原的彩色光切片图像

    Figure 2.  Effect of phase-shift error on optical sectioning images: (a) Wide-field image with defocused background; (b) structured illumination image; (c)−(f) three-dimensional (3D) color optical sectioning images processed by HSV-RMS algorithm under different phase-shift errors; (g)−(j) 3D color optical sectioning images processed by HT-COS algorithm under different phase-shift errors.

    图 3  高斯噪声对光切片重构图像的影响 (a)−(c) 高斯噪声方差为0.01时的结构光照明图像、HSV-RMS算法得到的光切片图像及HT-COS算法得到的光切片图像; (d)−(f) 高斯噪声方差为0.03时的结果; (g)−(i) 高斯噪声方差为0.05时的结果

    Figure 3.  Influence of Gaussian noise on the reconstructed optical sectioning images. Structured illumination image, optical sectioning images calculated by the HSV-RMS algorithm and HT-COS algorithm, respectively, under the conditions of the Gaussian noise with variances of (a)−(c) 0.01, (d)−(f) 0.03, and (g)−(i) 0.05.

    图 4  HSV-RMS算法和HT-COS算法的色彩复原保真度比较 (a)−(c)分别为原始图像、HSV-RMS算法处理后的光切片图像及HT-COS算法处理后的光切片图像; (d)−(f) 3幅图像各色块内的RGB值

    Figure 4.  Comparison of color restoration fidelity between HSV-RMS algorithm and HT-COS algorithm: (a)−(c) Raw image, optical sectioning image calculated by HSV-RMS algorithm and optical sectioning image calculated by HT-COS algorithm, respectively; (d)−(f) RGB values for the four different regions of each image.

    图 5  结构光照明彩色光切片实验光路及系统图 (a) 系统光路原理图; (b)系统实物图

    Figure 5.  Schematic diagram of structured illumination color optical sectioning system: (a) Light-path diagram; (b) apparatus diagram

    图 6  HSV-RMS算法和HT-COS算法重构的花粉彩色三维光切片图像效果对比 (a) HSV-RMS算法重构的三维图像; (b) HT-COS算法重构的三维图像; (c) 图(a)紫色方框区域的放大图像; (d) 图(b)绿色方框区域内的放大图像; (e) 图(c)中蓝色虚线和图(d)中红色实线上的强度分布; 标尺: 30 μm

    Figure 6.  Comparison of reconstructed result of pollen grain between HSV-RMS algorithm and HT-COS algorithm: (a) 3D reconstructed color image from HSV-RMS algorithm; (b) 3D reconstructed color image from HT-COS algorithm; (c) the enlarged image in the purple rectangular box in panel (a); (d) the enlarged image in the green rectangular box in (b); (e) normalized intensity distribution of the line-scan in panel (c) and (d), i.e. the “root-shaped” structure. Scale bar: 30 μm

    图 7  一种中华虎甲背部的三维彩色SIM成像结果 (a) 该中华虎甲样品完整三维图像的二维最大值投影, 使用4 ×, NA = 0.2物镜拍摄, 共拼接84个视场, 单视场轴向扫描350层; (b) 样品轴向进行三维叠加重构的示意图, 每一层都是经过HSV-RMS算法处理后的光切片图; (c) 图(a)中红色箭头所指区域局部放大的三维光切片最大值投影图像, 使用HSV-RMS算法进行图像处理, 20 ×, NA = 0.45物镜拍摄; (d) 图(c)的三维形貌分布; (e) 样品轴向进行三维叠加重构的示意图, 每一层都是经过HT-COS算法处理后的光切片图; (f)图(a)中红色箭头所指区域局部放大的三维光切片最大值投影图像, 使用HT-COS算法进行图像处理, 20 ×, NA = 0.45物镜拍摄; (g) 图(f)的三维形貌分布

    Figure 7.  3D color imaging result of a Chinese tiger beetle: (a) Maximum intensity projection image of the tiger beetle under 4 ×, NA = 0.2 objective lens, the 3D volume is rendered from 84 data sets stitching and sliced 350 layers; (b) schematic diagram of 3D reconstruction in axial direction after imaging processing with HSV-RMS algorithm; (c) maximum intensity projection images of the area pointed by the red arrow in panel (a) processed with HSV-RMS algorithm. The images are captured under 20 ×, NA = 0.45 objective lens; (d) 3D height map of panel (c); (e) schematic diagram of 3D reconstruction in axial direction after imaging processing with HT-COS algorithm; (f) maximum intensity projection images of the area pointed by the red arrow in (a) processed with HT-COS algorithm. The images are captured under 20 ×, NA = 0.45 objective lens; (g) the 3D height map of panel (f).

    表 1  两种SIM彩色光切片算法的性能比较

    Table 1.  Performance comparison of two algorithms for color optical sectioning SIM.

    视场个数图像采集总时间/s图像处理总时间/s图像数据容量/GB三维数据总像素数/pixels
    HSV-RMS算法8417671360810001010
    HT-COS算法84147297446701010
    DownLoad: CSV
  • [1]

    Liu F, Dong B, Liu X, Zheng Y, Zi J 2009 Opt. Express 17 16183Google Scholar

    [2]

    Shevtsova E, Hansson C, Janzen D H, Kjærandsen J 2011 Proc. Natl. Acad. Sci. USA 108 668Google Scholar

    [3]

    Kinoshita S, Yoshioka S 2005 Chem. Phys. Chem. 6 1442Google Scholar

    [4]

    Conchello J A, Lichtman J W 2005 Nat. Methods 2 920Google Scholar

    [5]

    Helmchen F, Denk W 2005 Nat. Methods 2 932Google Scholar

    [6]

    Michels J 2007 J. Microscopy 227 1Google Scholar

    [7]

    Mahou P, Vermot J, Beaurepaire E, Supatto W 2014 Nat. Methods 11 600Google Scholar

    [8]

    Dunn K W, Sandoval R M, Kelly K J, et al. 2002 Am. J. Physiol.-Cell Physiol. 28 C905Google Scholar

    [9]

    Gustafsson M G 2000 J. Microscopy 198 82Google Scholar

    [10]

    Shao L, Kner P, Rego E H, Gustafsson M G 2011 Nat. Methods 8 1044Google Scholar

    [11]

    Kner P, Chhun B B, Griffis E R, Winoto L, Gustafsson M G 2009 Nat. Methods 6 339Google Scholar

    [12]

    Neil M A, Juškaitis R, Wilson T 1997 Opt. Lett. 22 1905Google Scholar

    [13]

    Thomas B, Momany M, Kner P 2013 J. Opt. 15 094004Google Scholar

    [14]

    Mertz J 2011 Nat. Methods 8 811Google Scholar

    [15]

    Dan D, Lei M, Yao B, et al. 2013 Sci. Rep. 3 1116Google Scholar

    [16]

    Karadaglić D, Wilson T 2008 Micron 39 808Google Scholar

    [17]

    Patorski K, Trusiak M, Tkaczyk T 2014 Opt. Express 22 9517Google Scholar

    [18]

    Dan D, Yao B, Lei M 2014 Chin. Sci. Bull. 59 1291Google Scholar

    [19]

    Zhou X, Lei M, Dan D, Yao B, Qian J, Yan S, Yang Y, Min J, Peng T, Ye T 2015 PloS One 10Google Scholar

    [20]

    Qian J, Lei M, Dan D, Yao B, Zhou X, Yang Y, Yan S, Min J, Yu X 2015 Sci. Rep. 5 14513Google Scholar

    [21]

    Qian J, Dang S, Wang Z, Zhou X, Dan D, Yao B, Tong Y, Yang H, Lu Y, Chen Y, Yang X, Bai M, Lei M 2019 Opt. Express 27 4845Google Scholar

    [22]

    周兴 2018 博士学位论文 (西安: 西安交通大学)

    Zhou X 2018 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University) (in Chinese)

    [23]

    Nayar S K, Nakagawa Y 1990 Proceedings, IEEE International Conference on Robotics and Automation Cincinnati, USA, May 13–18, 1990 p218

    [24]

    Nayar S K, Nakagawa Y 1994 IEEE Trans. Pattern Anal. Mach. Intell. 16 824Google Scholar

  • [1] Yang Hao-Zhi, Nie Meng-Jiao, Ma Guang-Peng, Cao Hui-Qun, Lin Dan-Ying, Qu Jun-Le, Yu Bin. Digital micromirror device-based fast super-resolution lattice structured light illumination microscopy. Acta Physica Sinica, 2024, 73(9): 098702. doi: 10.7498/aps.73.20240216
    [2] Fu Ya-Peng, Sun Qian-Dong, Li Bo-Yi, Ta De-An, Xu Kai-Liang. Three-dimensional ultrafast ultrasound imaging of blood flow using row-column addressing array: A simulation study. Acta Physica Sinica, 2023, 72(7): 074302. doi: 10.7498/aps.72.20222106
    [3] Luo Ze-Wei, Wu Ge, Chen Zhi, Deng Chi-Nan, Wan Rong, Yang Tao, Zhuang Zheng-Fei, Chen Tong-Sheng. Dual-channel structured illumination super-resolution quantitative fluorescence resonance energy transfer imaging. Acta Physica Sinica, 2023, 72(20): 208701. doi: 10.7498/aps.72.20230853
    [4] Ge Yang-Yang, He Zhuo-Fen, Huang Li-Lin, Lin Dan-Ying, Cao Hui-Qun, Qu Jun-Le, Yu Bin. Flat-field multiplexed multifocal structured illumination super-resolution microscopy. Acta Physica Sinica, 2022, 71(4): 048704. doi: 10.7498/aps.71.20211712
    [5] Gao Zhao-Lin, Liu Rui-Hua, Wen Kai, Ma Ying, Li Jian-Lang, Gao Peng. Phase/fluorescence dual-mode microscopy imaging based on structured light illumination. Acta Physica Sinica, 2022, 71(24): 244203. doi: 10.7498/aps.71.20221518
    [6] Hu Jin-Hu, Lin Dan-Ying, Zhang Wei, Zhang Chen-Shuang, Qu Jun-Le, Yu Bin. Dual-sided illumination light-sheet fluorescence microscopy with virtual single-pixel imaging deconvolution. Acta Physica Sinica, 2022, 71(2): 028701. doi: 10.7498/aps.71.20211358
    [7] Zhong Xiao-Yan, Li Zhuo. Atomic scale characterization of three-dimensional structure, magnetic properties and dynamic evolutions of materials by transmission electron microscopy. Acta Physica Sinica, 2021, 70(6): 066801. doi: 10.7498/aps.70.20202072
    [8] Flat-field multiplexed multifocal structured illumination super-resolution microscopy. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211712
    [9] Feng Shuai, Chang Jun, Hu Yao-Yao, Wu Hao, Liu Xin. Design and analysis of polarization imaging lidar and short wave infrared composite optical receiving system. Acta Physica Sinica, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [10] Wang Jia-Lin, Yan Wei, Zhang Jia, Wang Lu-Wei, Yang Zhi-Gang, Qu Jun-Le. New advances in the research of stimulated emission depletion super-resolution microscopy. Acta Physica Sinica, 2020, 69(10): 108702. doi: 10.7498/aps.69.20200168
    [11] Yan Bo, Chen Li, Chen Shuang, Li Meng, Yin Yi-Min, Zhou Jiang-Ning. Structured illumination for two-dimensional laser induced fluorescence imaging to eliminate stray light interference. Acta Physica Sinica, 2019, 68(21): 218701. doi: 10.7498/aps.68.20190977
    [12] Fan Shuang, Zhang Ya-Ping, Wang Fan, Gao Yun-Long, Qian Xiao-Fan, Zhang Yong-An, Xu Wei, Cao Liang-Cai. Gerchberg-Saxton algorithm and angular-spectrum layer-oriented method for true color three-dimensional display. Acta Physica Sinica, 2018, 67(9): 094203. doi: 10.7498/aps.67.20172464
    [13] Zhao Tian-Yu, Zhou Xing, Dan Dan, Qian Jia, Wang Zhao-Jun, Lei Ming, Yao Bao-Li. Polarization control methods in structured illumination microscopy. Acta Physica Sinica, 2017, 66(14): 148704. doi: 10.7498/aps.66.148704
    [14] Zhang Chong-Lei, Xin Zi-Qiang, Min Chang-Jun, Yuan Xiao-Cong. Research progress of plasmonic structure illumination microscopy. Acta Physica Sinica, 2017, 66(14): 148701. doi: 10.7498/aps.66.148701
    [15] Li Dan, Zhang Bao-Long, Kwok Hoising. Three-dimensional optical modeling of vertical alignment mode color filter liquid-crystal-on-silicon microdisplays. Acta Physica Sinica, 2015, 64(14): 140701. doi: 10.7498/aps.64.140701
    [16] Zhao Ying-Chun, Zhang Xiu-Ying, Yuan Cao-Jin, Nie Shou-Ping, Zhu Zhu-Qing, Wang Lin, Li Yang, Gong Li-Ping, Feng Shao-Tong. Dark-field digital holographic microscopy by using vortex beam illumination. Acta Physica Sinica, 2014, 63(22): 224202. doi: 10.7498/aps.63.224202
    [17] Zhi Shao-Tao, Zhang Hai-Jun, Zhang Dong-Xian. Super-resolution optical microscopic imaging method based on annular illumination with high numerical aperture. Acta Physica Sinica, 2012, 61(2): 024207. doi: 10.7498/aps.61.024207
    [18] Zhang Bao-Long, Li Dan, Dai Feng-Zhi, Yang Shi-Feng, Hoising Kwok. Three-dimensional optical modeling of color filter liquid-crystal-on-silicon microdisplays. Acta Physica Sinica, 2012, 61(4): 040701. doi: 10.7498/aps.61.040701
    [19] Lin Hao-Ming, Shao Yong-Hong, Qu Jun-Le, Yin Jun, Chen Si-Ping, Niu Han-Ben. Study on wide-field fluorescence sectioning microscopy based on dynamic speckle illumination. Acta Physica Sinica, 2008, 57(12): 7641-7649. doi: 10.7498/aps.57.7641
    [20] CHEN GUAN-YING, LI SHU-ZHONG. ANALYSIS OF IMAGE-FORMING MECHANISM FOR A NOVEL STEREO PSEUDO COLOR MICROSCOPE. Acta Physica Sinica, 1999, 48(1): 23-30. doi: 10.7498/aps.48.23
Metrics
  • Abstract views:  11806
  • PDF Downloads:  209
  • Cited By: 0
Publishing process
  • Received Date:  09 March 2020
  • Accepted Date:  02 April 2020
  • Published Online:  20 June 2020

/

返回文章
返回