Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

New advances in the research of stimulated emission depletion super-resolution microscopy

Wang Jia-Lin Yan Wei Zhang Jia Wang Lu-Wei Yang Zhi-Gang Qu Jun-Le

Citation:

New advances in the research of stimulated emission depletion super-resolution microscopy

Wang Jia-Lin, Yan Wei, Zhang Jia, Wang Lu-Wei, Yang Zhi-Gang, Qu Jun-Le
PDF
HTML
Get Citation
  • Due to the influence of the diffraction limit, the lateral spatial resolution and axial spatial resolution of traditional optical microscopes are limited to ~200 nm and ~500 nm, respectively. In the past two decades, with the rapid development of high-intensity lasers, high-sensitivity detectors and other optoelectronic devices, there have been reported many super-resolution imaging techniques that bypass the optical diffraction limit with different methods. Among these techniques, stimulated emission depletion microscopy (STED) technology has the advantages of high imaging resolution and fast imaging speed. This technology uses two lasers for imaging, one of which is used to excite fluorescence, and the other donut-shaped depletion laser is used to suppress the emission of fluorescent molecules around the fluorescent spot, in order to reduce the fluorescence point spread function and achieve super resolution Imaging. After recent years of development, the STED system has got great progress no matter from the generation, calibration and scanning of the beam, and the final imaging. In terms of laser source, new laser sources such as continuous wave beams, supercontinuum laser, stimulated Raman scattered laser, and higher-order Bessel beams have appeared; in scanning and calibration, new efficiency technology such as parallel scanning and automatic calibration have also appeared; In imaging, new methods such as time gating and phasor analysis have emerged to improve imaging quality. These new technologies and methods are of great significance to improve the efficiency of STED system construction and imaging. In addition, this paper also focuses on the ways to expand the imaging functions of the STED system. First, for three-dimensional STED imaging, this paper mainly introduces three methods to realize three-dimensional STED imaging by wavefront non-coherent adjustment, 4Pi and structured light illumination methods. Second, for multi-color imaging, this paper introduces several dual-color and multi-color imaging techniques for special dyes. Third, this paper introduces the combination of STED technology with fluorescence correlation spectroscopy technology, cell expansion technology, scanning ion-conductance microscope, photo-activated localization microscopy/stochastic optical reconstruction microscopy and other technologies. Finally, this paper systematically discusses the new research progress of STED technology in recent years, and discusses the future development trend of STED technology.
      Corresponding author: Yan Wei, weiyan@szu.edu.cn ; Qu Jun-Le, jlqu@szu.edu.cn
    [1]

    Hell SW, Wichmann J 1994 Opt. Lett. 19 780Google Scholar

    [2]

    Wildanger D, Patton B R, Schill H, et al. 2012 Adv. Mater. 24 309

    [3]

    Willig K I, Harke B, Medda R, Hell S W 2007 Nat. Methods 4 915Google Scholar

    [4]

    Wildanger D, Rittweger E, Kastrup L, Hell S W 2008 Opt. Express 16 9614Google Scholar

    [5]

    Rankin B R, Kellner R R, Hell SW 2008 Opt. Lett. 33 2491Google Scholar

    [6]

    Török P, Munro P 2004 Opt. Express 12 3605Google Scholar

    [7]

    Yu W T, Ji Z H, Dong D S, Yang X S, Xiao Y F, Gong Q H, Xi P, Shi K B 2016 LaserPhotonicsRev. 10 147

    [8]

    Zhang P, Goodwin P M, Werner J H 2014 Opt. Express 22 12398Google Scholar

    [9]

    Gould T J, Kromann E B, Burke D, et al. 2013 Opt. Lett. 38 1860Google Scholar

    [10]

    Reuss M, Engelhardt J, Hell S W 2010 Opt. Express 18 1049Google Scholar

    [11]

    Görlitz F, Guldbrand S, Runcorn T H, et al. 2018 J. Biophotonics. 11 e201800087Google Scholar

    [12]

    Yan L, Gregg P, Karimi E, et al. 2015 Optica 2 900Google Scholar

    [13]

    Gael M, Rebecca M, Birka H, Arnold G, Volker W, Hell SW 2010 Opt. Express 18 1302Google Scholar

    [14]

    MurJ, Kavčič B, PoberajI 2013 Appl. Opt. 52 6506Google Scholar

    [15]

    Wu Y, Wu X D, Toro L, Stefani E 2015 Methods 88 48Google Scholar

    [16]

    Wu X D, Toro L, Stefani E, Wu Y 2015 J. Microsc-Oxford 25 731

    [17]

    Wagner O, Cheshnovsky O, Roichman Y 2013 Novel Techniques in Microscopy Waikoloa Beach, Hawaii, April 14–18, 2013 NM4 B.3

    [18]

    Bingen P, Reuss M, Engelhardt J, Hell S W 2011 Opt. Express 19 23716Google Scholar

    [19]

    Lee S H, Grier D G 2005 Opt. Express 13 7458Google Scholar

    [20]

    Guerrieri F, Bellisai S, Tosi A, Padovini G, Tisa S 2010 23 rd Annual Meeting of the IEEEDenver, CO, USA November 7—11, 2010 p355

    [21]

    Chang L K, Wang G C, Dolinsky S 2009 IEEETrans. Nucl. Sci. 56 2580Google Scholar

    [22]

    Diaspro A, Chirico G 2003 Cell. Tech. 126 195

    [23]

    Helmchen F, Denk W 2005 Nat. Methods 2 932Google Scholar

    [24]

    Gael M, Hell SW 2009 Opt. Express 17 14567Google Scholar

    [25]

    Bianchini P, Harke B, Galiani S, Vicidomini G, Diaspro A 2012 Proc. Natl. Acad. Sci. 109 6390Google Scholar

    [26]

    Wang W S, Zhao G Y, Kuang C F, et al. 2018 Opt. Commun. 423 167Google Scholar

    [27]

    Göttfert F, Wurm C A, Mueller V, Berning S, Cordes V C, Honigmann A, Hell S W 2013 Biophys. J. 105 L01Google Scholar

    [28]

    Tønnesen J, Nadrigny F, Willig K, Wedlich-Söldner R, Nägerl U V 2011 Biophys. J. 101 2545Google Scholar

    [29]

    Bückers J, Wildanger D, Vicidomini G, KastrupL, Hell S W 2011 Opt. Express 19 3130Google Scholar

    [30]

    Wildanger D, Medda R, Kastrup L, Hell S W 2009 J. Microsc. 236 35Google Scholar

    [31]

    Hell S W, Stelzer E H K 1992 J. Opt. Soc. Am. A 9 2159

    [32]

    Schmidt R, Wurm C A, Jakobs S, Engelhardt J, Egner A, Hell S W 2008 Nat. Methods 5 539Google Scholar

    [33]

    Yang X S, Xie H, Alonas E, Liu J, Chen X Z, Sangangelo P J, Ren Q, Xi Peng, Jin D Y 2016 Light Sci. Appl. 5 e16134Google Scholar

    [34]

    Gustafsson M G 2010 J. Microsc-Oxford 198 82

    [35]

    Gustafsson M G, Lin S, Carlton P M, et al. 2008 Biophys. J. 94 4957Google Scholar

    [36]

    Xue Y, So P T C 2018 Opt. Express 26 20920Google Scholar

    [37]

    Xue Y, Kuang C F, Xiang H, Gu Z T, Xu L 2011 J. Opt. -UK 13 125704Google Scholar

    [38]

    Yan W, Yang Y L, Tan Y, Chen X, Li Y, Qu J L, Tong Y 2017 Photonics. Res. 5 176Google Scholar

    [39]

    Hovhannisyan V A, Su P J, Dong C Y 2008 J. Biomed. Opt. 13 44023Google Scholar

    [40]

    Wang L W, Yan W, Li R Z, Weng X Y, Zhang J, Yang Z G, Liu L W, Ye T, Qu J L 2018 Nanophotonics-Berlin 7 1971Google Scholar

    [41]

    Diaspro A, Tosi A, Boso G, Vicidomini G, Hernández I C, Buttafava M 2015 Biomed. Opt. Express 6 2258Google Scholar

    [42]

    Giuseppe V, Andreas S, Haisen T, Kyu Y H, Gael M, Christian E, Hell S W 2013 PlosOne 8 e54421Google Scholar

    [43]

    Castello M, Diaspro A, Vicidomini G 2015 Appl. Phys. Lett. 105 234106

    [44]

    Wang Y F, Kuang C F, Gu Z T, Xu Y K, Li S, Hao X, Liu X 2013 Opt. Eng. 52 93107Google Scholar

    [45]

    Wang L W, Chen B L, Yan W, Yang Z G, Qu J L 2018 Nanoscale 10 1039

    [46]

    Lanzanò L, Coto HI, Castello M, Gratton E, Diaspro A, Vicidomini G 2015 Nat. Commun. 66 701

    [47]

    Tortarolo G, Sun Y, Teng KW, Ishitsuka Y, Vicidomini G 2019 Nanoscale 11 1754Google Scholar

    [48]

    Liu Y J, Lu Y Q, Yang X S, et al. 2017 Nature 543 229Google Scholar

    [49]

    Zhan Q Q, Liu H, Wang B, Wu Q, Pu R, Zhou C, Huang B, Peng X, He S 2017 Nat. Commun. 8 1058Google Scholar

    [50]

    Li D Y, Qin W, Xu B, Qian J, Tang B Z 2017 Adv. Mater. 29 1703643Google Scholar

    [51]

    Ye S, Yan W, Zhao M, Peng X, Song J, Qu J L 2018 Adv. Mater. 30 1800167Google Scholar

    [52]

    Li H, Ye S, Guo J, Wang H, Yan W, Song J, Qu J L 2019 Nano Res. 12 3075Google Scholar

    [53]

    Liang L, Yan W, Qin X, et al. 2020 Angew. Chem. 59 746Google Scholar

    [54]

    Kuang C F, Li S, Liu W, Hao X, Gu Z T, Wang Y F, Ge J H, Li H F, Liu X 2013 Sci. Rep. -UK 3 1441Google Scholar

    [55]

    Wang L W, Chen Y, Peng X, Zhang J, Wang J L, Liu L W, Yang Z G, Yan W, Qu J L 2020 Nanophotonics-BerlinDOI: 10.1515/nanoph-2019-0475

    [56]

    Ries J, Schwille P 2012 BioEssays 34 361Google Scholar

    [57]

    Lars K, Hans B, Christian E, Hell SW 2005 Phys. Rev. Lett. 94 178104Google Scholar

    [58]

    Lanzanò L, Scipioni L, Bona MD, Bianchini P, Vicidomini G 2017 Nat. Commun. 8 65Google Scholar

    [59]

    Gould T J, Myers J R, Joerg B 2011 Opt. Express 19 13351Google Scholar

    [60]

    Marcel L, Christian R, Theo L, Hell S W, Christian E 2012 Opt. Express 20 5243Google Scholar

    [61]

    Honigmann A, Mueller V, Ta H, Schoenle A, Sezgin E, Hell S W, Eggeling C 2014 Nat. Commun. 5 5412Google Scholar

    [62]

    Chen F, Tillberg PW, Boyden ES 2015 Science 34 7543

    [63]

    Gao M, Maraspini R, Beutel O, Zehtabian A, Ewers H 2018 ACSNano 12 4178

    [64]

    Hansma P K, Drake B, Marti O, Gould S A, Prater C B 1989 Science 243 641Google Scholar

    [65]

    Gorelik J, Shevchuk A, Ramalho M, et al. 2002 Proc. Natl. Acad. Sci. U. S. A. 99 16018Google Scholar

    [66]

    Hagemann P, Gesper A, Happel P 2018 ACSNano 12 5807

    [67]

    Eric B, Patterson G H, Rachid S, et al. 2006 Science 313 1642Google Scholar

    [68]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 93

    [69]

    Eilers Y, Ta H, Gwosch K C, Balzarotti F, Hell SW 2018 Proc. Natl. Acad. Sci. U. S. A. 115 6117Google Scholar

    [70]

    Göttfert F, Pleiner T, Heine J, Westphal V, Görlich D, Sahl SJ, Hell S W 2017 Proc. Natl. Acad. Sci. U. S. A. 114 201621495

    [71]

    Bernhardt M J D N, Osterhoff M, Mittelst D H, et al. 2018 Nat. Commun. 9 3641Google Scholar

    [72]

    Harke B, Chacko J V, Haschke H, Canale C, Diaspro A 2012 Opt. Nanoscopy 1 3Google Scholar

    [73]

    Chacko J V, Canale C, Harke B, DiasproA 2013 PlosOne 8 e66608Google Scholar

    [74]

    Wegner W, Ilgen P, Gregor C, Dort J V, Mott A C, Steffens H, Willig K I 2017 Sci. Rep. 7 11781Google Scholar

    [75]

    Sebastian B, Willig K I, Heinz S, Payam D, Hell S W 2012 Science 335 551Google Scholar

    [76]

    Wijetunge LS, Julie A, Andreas F, Kind P C, Nägerl U V 2014 J. Neurosci. 34 6405Google Scholar

  • 图 1  STED的原理图 (a)能级辐射示意图; (b)光束重合示意图

    Figure 1.  The concept of STED: (a)The concept of stimulated emission; (b)the overlapping of beams.

    图 2  STED系统图

    Figure 2.  The setup of STED system.

    图 3  基于超连续谱光源的STED系统[4]

    Figure 3.  STED system based on supercontinuum laser source[4].

    图 4  基于受激拉曼散射光源的STED系统示意图[5] (a)基于受激拉曼散射光源的多色STED系统; (b)激光器在光纤中的SRS输出光谱

    Figure 4.  Simplified schematic of a STED system with a stimulated Raman-scattering light source[5]: (a) Multicolor STED system with stimulated Raman-scattering laser source; (b) output spectrum from the SRS fiber.

    图 5  TED光强度的分布曲线[6]

    Figure 5.  The intensity distributions of depletion beam[6].

    图 6  共聚焦、传统STED与贝塞尔STED成像的分辨率随成像深度的变化曲线[7] (a) 40 nm荧光珠在固体琼脂糖样品不同深度成像的分辨率; (b) 40 nm荧光珠在类脑组织灰质不同深度成像的分辨率

    Figure 6.  Imaging curves of Confocal、traditional STED and Bessel-STED[7]: (a) Resolution of 40 nm fluorescent beads at different depths of solid agarose samples; (b) resolution of 40 nm fluorescent beads at different depths of like-gray matter in brain tissue.

    图 7  零阶贝塞尔激发光与高阶贝塞尔STED光[8] (a)零阶贝塞尔激发光在XY平面的光强分布; (b)零阶贝塞尔激发光的光强曲线; (c)一阶贝塞尔STED光在XY平面的光强分布; (d)一阶(黑色)与二阶(红色)贝塞尔STED光的光强曲线

    Figure 7.  The zero-order Bessel beam for excitation and the higher-order Bessel beam for depletion[8]: (a) The intensity distribution of zero-order Bessel excitation beam in the XY plane.; (b) the intensity curve of zero-order Bessel excitation beam; (c) the intensity distribution of first-order Bessel depletion beam in the XY plane; (d) the intensity curve of first-order (black) and second-order (red)Bessel depletion beam.

    图 8  STED光束与激发光束的对准结果[9] (a)激发光与STED光未对准时的金纳米颗粒图像; (b) (a)中激发光与STED光未对准时所得到的荧光珠的共聚焦(绿色)与STED(红色)图像的合并; (c)沿图(b)中所示虚线的信号强度曲线: 共聚焦(绿色)和STED(红色); (d)激发光与STED光对准情况下的金纳米颗粒图像; (e) (d)中激发光与STED光对准时所得到的荧光珠的共聚焦(绿色)与STED(红色)图像的合并; (f)沿图(e)中所示直线和点划线的信号强度曲线: 共聚焦(绿色)和STED(红色)

    Figure 8.  Alignment results of depletion and excitation beams[9]: (a) Merged result of the excitation focus (green) and a poorly aligned depletion focus(red) using gold nanoparticles; (b) merged result of corresponding confocal (green) and STED(red) images of fluorescent beads imaged with the focus shown in (a); (c) line profiles across the dotted line in (b): confocal (green) and STED (red); (d) merged image of the excitation focus (green) and a well aligned depletion focus (red); (e) merged result of corresponding confocal (green) and STED (red) images of fluorescent beads imaged with the focus shown in (d); (f) line profiles across the solid and dashed lines in (e): confocal (green) and STED (red).

    图 9  双折射光束整形示意图[10] (a) easy-STED双折射光束整形装置示意图; (b)光斑重合效果

    Figure 9.  Schematic of birefringent beam shaping[10]: (a) Schematic of an easy-STED microscope using a birefringent beam shaping device; (b) merged image of the excitation beam and a depletion beam.

    图 10  asySLM-STED系统示意图[11]

    Figure 10.  Schematic diagram of easySLM-STED system[11]

    图 11  并行扫描STED示意图[17,18] (a)扩展STED光束对的结果; (b)多点扫描STED光路示意图

    Figure 11.  Schematic diagram of parallel scanning STED[17,18]: (a) Results of extended STED beam pairs; (b) optical path of the multi-point scanning STED.

    图 12  双光子STED系统示意图[24]

    Figure 12.  Schematic diagram of two-photon STED system[24].

    图 13  双光子STED系统及成像结果[25] (a) SW2PE-STED系统示意图; (b) 2PE与2PE-STED成像对比

    Figure 13.  Schematic of two-photon STED and imaging results[25]: (a) Schematic of SW2PE-STED system; (b) 2PE and 2PE-STED imaging.

    图 14  双光源双色STED系统示意图[28] (a)双光源双色STED系统示意图; (b) YFP与GFP的荧光发射光谱

    Figure 14.  Schematic diagram of two laser source dual-color STED system[28]: (a) Dual-color STED system with two laser sources; (b) emission spectra of GFP and YFP.

    图 15  基于非相干波前调制的3D-STED成像系统示意图[30]. 插图: 用于实现横向超分辨(HR)或3D超分辨率(3D)的相位板及对应的STED PSF

    Figure 15.  Schematic diagram of 3D-STED system with non-coherent wavefront modulation[30]. Inset: combinations of phase plates and resulting STED PSFs used to achieve either ultimate lateral resolution (HR) or 3D superresolution.

    图 16  利用4π法实现3D-STED成像的系统示意图[32]

    Figure 16.  Schematic diagram of 4π3D-STED system[32].

    图 17  基于结构光照明的系统图[35,36] (a)结构光照明系统图及空间强度分布; (b)结构光照明3D-STED系统示意图

    Figure 17.  Structured illumination system[35,36]: (a) Simplified diagram of the structured illumination apparatus and spatial intensity distribution; (b) structured illumination 3D-STED system.

    图 18  时间门控STED[41] (a)快速时间门控STED系统示意图; (b)共聚焦、STED与gate-STED分辨率结果

    Figure 18.  Time-gated STED[41]: (a) Schematic of fast-gated STED system; (b) comparison of spatial resolution for confocal, STED and gate-STED resolution.

    图 19  离线时间门控STED[44] (a)共聚焦、STED与off-line gated-STED分辨率结果; (b) Tg、分辨率与PSNR关系曲线

    Figure 19.  Off-line gated-STED[44]: (a) Spatial resolutions of confocal, STED and off-line gated-STED; (b)the relationship between Tg, resolution and PSNR.

    图 20  STED-FLIM成像及相图分析结果[45] (a)彩色相位图; (b)荧光珠的共聚焦图像; (c)荧光珠的STED图像(10 mW); (d)时间门STED图像; (e)相图分析后的图像

    Figure 20.  STED-FLIM and Phasor-plot analysis[45]: (a) Phasor color map of the STED-FLIM image; (b) Confocal, (c) STED·(10 mW), (d) time gate STED and (e) Phasor-plot images of fluorescent beads.

    图 21  区域分割法与pSTED-SPLIT方法所得到的荧光珠的成像结果[47] (a)区域分割法示意图; (b) pSTED-SPLIT方法示意图; (c)从左到右依次为荧光珠的共聚焦、常规STED、区域分割法STED和pSTED-SPLIT的成像结果

    Figure 21.  Imaging results of fluorescent beads using segmentation and pSTED-SPLIT methods[47]: (a) Schematic diagram of segmentation method; (b) schematic diagram of pSTED-SPLIT method; (c) from left to right: Confocal, conventional STED, segmentation STED, and pSTED-SPLIT imaging results of fluorescence beads.

    图 22  上转换示意图及利用上转换纳米颗粒的成像结果[48] (a)上转换能级关系图; (b)上转换纳米颗粒成像结果

    Figure 22.  Schematic diagram of upconversion and imaging results[48]: (a) Diagram of energy levels of upconversion nanoparticles; (b) imaging results of UCNPs.

    图 23  FED成像原理[53]

    Figure 23.  Illustration of FED theory[53].

    图 24  DE-STED原理图[55]

    Figure 24.  Schematic principle of DE-STED[55].

    图 25  TIRF-STED-FCS系统示意图[59]

    Figure 25.  Schematic of TIRF-STED-FCS system[59].

    图 26  脂膜上sSTED-FCS的成像结果[61]

    Figure 26.  sSTED-FCS results of the lipid membrane[61].

  • [1]

    Hell SW, Wichmann J 1994 Opt. Lett. 19 780Google Scholar

    [2]

    Wildanger D, Patton B R, Schill H, et al. 2012 Adv. Mater. 24 309

    [3]

    Willig K I, Harke B, Medda R, Hell S W 2007 Nat. Methods 4 915Google Scholar

    [4]

    Wildanger D, Rittweger E, Kastrup L, Hell S W 2008 Opt. Express 16 9614Google Scholar

    [5]

    Rankin B R, Kellner R R, Hell SW 2008 Opt. Lett. 33 2491Google Scholar

    [6]

    Török P, Munro P 2004 Opt. Express 12 3605Google Scholar

    [7]

    Yu W T, Ji Z H, Dong D S, Yang X S, Xiao Y F, Gong Q H, Xi P, Shi K B 2016 LaserPhotonicsRev. 10 147

    [8]

    Zhang P, Goodwin P M, Werner J H 2014 Opt. Express 22 12398Google Scholar

    [9]

    Gould T J, Kromann E B, Burke D, et al. 2013 Opt. Lett. 38 1860Google Scholar

    [10]

    Reuss M, Engelhardt J, Hell S W 2010 Opt. Express 18 1049Google Scholar

    [11]

    Görlitz F, Guldbrand S, Runcorn T H, et al. 2018 J. Biophotonics. 11 e201800087Google Scholar

    [12]

    Yan L, Gregg P, Karimi E, et al. 2015 Optica 2 900Google Scholar

    [13]

    Gael M, Rebecca M, Birka H, Arnold G, Volker W, Hell SW 2010 Opt. Express 18 1302Google Scholar

    [14]

    MurJ, Kavčič B, PoberajI 2013 Appl. Opt. 52 6506Google Scholar

    [15]

    Wu Y, Wu X D, Toro L, Stefani E 2015 Methods 88 48Google Scholar

    [16]

    Wu X D, Toro L, Stefani E, Wu Y 2015 J. Microsc-Oxford 25 731

    [17]

    Wagner O, Cheshnovsky O, Roichman Y 2013 Novel Techniques in Microscopy Waikoloa Beach, Hawaii, April 14–18, 2013 NM4 B.3

    [18]

    Bingen P, Reuss M, Engelhardt J, Hell S W 2011 Opt. Express 19 23716Google Scholar

    [19]

    Lee S H, Grier D G 2005 Opt. Express 13 7458Google Scholar

    [20]

    Guerrieri F, Bellisai S, Tosi A, Padovini G, Tisa S 2010 23 rd Annual Meeting of the IEEEDenver, CO, USA November 7—11, 2010 p355

    [21]

    Chang L K, Wang G C, Dolinsky S 2009 IEEETrans. Nucl. Sci. 56 2580Google Scholar

    [22]

    Diaspro A, Chirico G 2003 Cell. Tech. 126 195

    [23]

    Helmchen F, Denk W 2005 Nat. Methods 2 932Google Scholar

    [24]

    Gael M, Hell SW 2009 Opt. Express 17 14567Google Scholar

    [25]

    Bianchini P, Harke B, Galiani S, Vicidomini G, Diaspro A 2012 Proc. Natl. Acad. Sci. 109 6390Google Scholar

    [26]

    Wang W S, Zhao G Y, Kuang C F, et al. 2018 Opt. Commun. 423 167Google Scholar

    [27]

    Göttfert F, Wurm C A, Mueller V, Berning S, Cordes V C, Honigmann A, Hell S W 2013 Biophys. J. 105 L01Google Scholar

    [28]

    Tønnesen J, Nadrigny F, Willig K, Wedlich-Söldner R, Nägerl U V 2011 Biophys. J. 101 2545Google Scholar

    [29]

    Bückers J, Wildanger D, Vicidomini G, KastrupL, Hell S W 2011 Opt. Express 19 3130Google Scholar

    [30]

    Wildanger D, Medda R, Kastrup L, Hell S W 2009 J. Microsc. 236 35Google Scholar

    [31]

    Hell S W, Stelzer E H K 1992 J. Opt. Soc. Am. A 9 2159

    [32]

    Schmidt R, Wurm C A, Jakobs S, Engelhardt J, Egner A, Hell S W 2008 Nat. Methods 5 539Google Scholar

    [33]

    Yang X S, Xie H, Alonas E, Liu J, Chen X Z, Sangangelo P J, Ren Q, Xi Peng, Jin D Y 2016 Light Sci. Appl. 5 e16134Google Scholar

    [34]

    Gustafsson M G 2010 J. Microsc-Oxford 198 82

    [35]

    Gustafsson M G, Lin S, Carlton P M, et al. 2008 Biophys. J. 94 4957Google Scholar

    [36]

    Xue Y, So P T C 2018 Opt. Express 26 20920Google Scholar

    [37]

    Xue Y, Kuang C F, Xiang H, Gu Z T, Xu L 2011 J. Opt. -UK 13 125704Google Scholar

    [38]

    Yan W, Yang Y L, Tan Y, Chen X, Li Y, Qu J L, Tong Y 2017 Photonics. Res. 5 176Google Scholar

    [39]

    Hovhannisyan V A, Su P J, Dong C Y 2008 J. Biomed. Opt. 13 44023Google Scholar

    [40]

    Wang L W, Yan W, Li R Z, Weng X Y, Zhang J, Yang Z G, Liu L W, Ye T, Qu J L 2018 Nanophotonics-Berlin 7 1971Google Scholar

    [41]

    Diaspro A, Tosi A, Boso G, Vicidomini G, Hernández I C, Buttafava M 2015 Biomed. Opt. Express 6 2258Google Scholar

    [42]

    Giuseppe V, Andreas S, Haisen T, Kyu Y H, Gael M, Christian E, Hell S W 2013 PlosOne 8 e54421Google Scholar

    [43]

    Castello M, Diaspro A, Vicidomini G 2015 Appl. Phys. Lett. 105 234106

    [44]

    Wang Y F, Kuang C F, Gu Z T, Xu Y K, Li S, Hao X, Liu X 2013 Opt. Eng. 52 93107Google Scholar

    [45]

    Wang L W, Chen B L, Yan W, Yang Z G, Qu J L 2018 Nanoscale 10 1039

    [46]

    Lanzanò L, Coto HI, Castello M, Gratton E, Diaspro A, Vicidomini G 2015 Nat. Commun. 66 701

    [47]

    Tortarolo G, Sun Y, Teng KW, Ishitsuka Y, Vicidomini G 2019 Nanoscale 11 1754Google Scholar

    [48]

    Liu Y J, Lu Y Q, Yang X S, et al. 2017 Nature 543 229Google Scholar

    [49]

    Zhan Q Q, Liu H, Wang B, Wu Q, Pu R, Zhou C, Huang B, Peng X, He S 2017 Nat. Commun. 8 1058Google Scholar

    [50]

    Li D Y, Qin W, Xu B, Qian J, Tang B Z 2017 Adv. Mater. 29 1703643Google Scholar

    [51]

    Ye S, Yan W, Zhao M, Peng X, Song J, Qu J L 2018 Adv. Mater. 30 1800167Google Scholar

    [52]

    Li H, Ye S, Guo J, Wang H, Yan W, Song J, Qu J L 2019 Nano Res. 12 3075Google Scholar

    [53]

    Liang L, Yan W, Qin X, et al. 2020 Angew. Chem. 59 746Google Scholar

    [54]

    Kuang C F, Li S, Liu W, Hao X, Gu Z T, Wang Y F, Ge J H, Li H F, Liu X 2013 Sci. Rep. -UK 3 1441Google Scholar

    [55]

    Wang L W, Chen Y, Peng X, Zhang J, Wang J L, Liu L W, Yang Z G, Yan W, Qu J L 2020 Nanophotonics-BerlinDOI: 10.1515/nanoph-2019-0475

    [56]

    Ries J, Schwille P 2012 BioEssays 34 361Google Scholar

    [57]

    Lars K, Hans B, Christian E, Hell SW 2005 Phys. Rev. Lett. 94 178104Google Scholar

    [58]

    Lanzanò L, Scipioni L, Bona MD, Bianchini P, Vicidomini G 2017 Nat. Commun. 8 65Google Scholar

    [59]

    Gould T J, Myers J R, Joerg B 2011 Opt. Express 19 13351Google Scholar

    [60]

    Marcel L, Christian R, Theo L, Hell S W, Christian E 2012 Opt. Express 20 5243Google Scholar

    [61]

    Honigmann A, Mueller V, Ta H, Schoenle A, Sezgin E, Hell S W, Eggeling C 2014 Nat. Commun. 5 5412Google Scholar

    [62]

    Chen F, Tillberg PW, Boyden ES 2015 Science 34 7543

    [63]

    Gao M, Maraspini R, Beutel O, Zehtabian A, Ewers H 2018 ACSNano 12 4178

    [64]

    Hansma P K, Drake B, Marti O, Gould S A, Prater C B 1989 Science 243 641Google Scholar

    [65]

    Gorelik J, Shevchuk A, Ramalho M, et al. 2002 Proc. Natl. Acad. Sci. U. S. A. 99 16018Google Scholar

    [66]

    Hagemann P, Gesper A, Happel P 2018 ACSNano 12 5807

    [67]

    Eric B, Patterson G H, Rachid S, et al. 2006 Science 313 1642Google Scholar

    [68]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 93

    [69]

    Eilers Y, Ta H, Gwosch K C, Balzarotti F, Hell SW 2018 Proc. Natl. Acad. Sci. U. S. A. 115 6117Google Scholar

    [70]

    Göttfert F, Pleiner T, Heine J, Westphal V, Görlich D, Sahl SJ, Hell S W 2017 Proc. Natl. Acad. Sci. U. S. A. 114 201621495

    [71]

    Bernhardt M J D N, Osterhoff M, Mittelst D H, et al. 2018 Nat. Commun. 9 3641Google Scholar

    [72]

    Harke B, Chacko J V, Haschke H, Canale C, Diaspro A 2012 Opt. Nanoscopy 1 3Google Scholar

    [73]

    Chacko J V, Canale C, Harke B, DiasproA 2013 PlosOne 8 e66608Google Scholar

    [74]

    Wegner W, Ilgen P, Gregor C, Dort J V, Mott A C, Steffens H, Willig K I 2017 Sci. Rep. 7 11781Google Scholar

    [75]

    Sebastian B, Willig K I, Heinz S, Payam D, Hell S W 2012 Science 335 551Google Scholar

    [76]

    Wijetunge LS, Julie A, Andreas F, Kind P C, Nägerl U V 2014 J. Neurosci. 34 6405Google Scholar

  • [1] Luo Ze-Wei, Wu Ge, Chen Zhi, Deng Chi-Nan, Wan Rong, Yang Tao, Zhuang Zheng-Fei, Chen Tong-Sheng. Dual-channel structured illumination super-resolution quantitative fluorescence resonance energy transfer imaging. Acta Physica Sinica, 2023, 72(20): 208701. doi: 10.7498/aps.72.20230853
    [2] Gu Tong-Kai, Wang Lan-Lan, Guo Yang, Jiang Wei-Tao, Shi Yong-Sheng, Yang Shuo, Chen Jin-Ju, Liu Hong-Zhong. Realization of reconfigurable super-resolution imaging by liquid microlens arrays integrated on light disk. Acta Physica Sinica, 2023, 72(9): 099501. doi: 10.7498/aps.72.20222251
    [3] Fu Ya-Peng, Sun Qian-Dong, Li Bo-Yi, Ta De-An, Xu Kai-Liang. Three-dimensional ultrafast ultrasound imaging of blood flow using row-column addressing array: A simulation study. Acta Physica Sinica, 2023, 72(7): 074302. doi: 10.7498/aps.72.20222106
    [4] Hu Jin-Hu, Lin Dan-Ying, Zhang Wei, Zhang Chen-Shuang, Qu Jun-Le, Yu Bin. Dual-sided illumination light-sheet fluorescence microscopy with virtual single-pixel imaging deconvolution. Acta Physica Sinica, 2022, 71(2): 028701. doi: 10.7498/aps.71.20211358
    [5] Feng Shuai, Chang Jun, Hu Yao-Yao, Wu Hao, Liu Xin. Design and analysis of polarization imaging lidar and short wave infrared composite optical receiving system. Acta Physica Sinica, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [6] Qian Jia, Dang Shi-Pei, Zhou Xing, Dan Dan, Wang Zhao-Jun, Zhao Tian-Yu, Liang Yan-Sheng, Yao Bao-Li, Lei Ming. Fast structured illumination three-dimensional color microscopic imaging method based on Hilbert-transform. Acta Physica Sinica, 2020, 69(12): 128701. doi: 10.7498/aps.69.20200352
    [7] Zhang Jia, Samanta Soham, Wang Jia-Lin, Wang Lu-Wei, Yang Zhi-Gang, Yan Wei, Qu Jun-Le. Study on a novel probe for stimulated emission depletion Super-resolution Imaging of Mitochondria. Acta Physica Sinica, 2020, 69(16): 168702. doi: 10.7498/aps.69.20200171
    [8] Li Xiao-Nan, Guan Guo-Rong, Liu Yi-Kun, Liang Hao-Wen, Zhang Ai-Qin, Zhou Jian-Ying. Fabrication and physical measurement accuracy of nanoscale standard samples for vector beams confocal laser scanning microscopy. Acta Physica Sinica, 2019, 68(14): 148102. doi: 10.7498/aps.68.20190252
    [9] Fan Qi-Meng, Yin Cheng-You. Super-resolution imaging of high-contrast target in elctromagnetic inverse scattering. Acta Physica Sinica, 2018, 67(14): 144101. doi: 10.7498/aps.67.20180266
    [10] Zhao Tian-Yu, Zhou Xing, Dan Dan, Qian Jia, Wang Zhao-Jun, Lei Ming, Yao Bao-Li. Polarization control methods in structured illumination microscopy. Acta Physica Sinica, 2017, 66(14): 148704. doi: 10.7498/aps.66.148704
    [11] Qin Fei, Hong Ming-Hui, Cao Yao-Yu, Li Xiang-Ping. Advances in the far-field sub-diffraction limit focusing and super-resolution imaging by planar metalenses. Acta Physica Sinica, 2017, 66(14): 144206. doi: 10.7498/aps.66.144206
    [12] Li Shao-Dong, Chen Yong-Bin, Liu Run-Hua, Ma Xiao-Yan. Analysis on the compressive sensing based narrow-band radar super resolution imaging mechanism of rapidly spinning targets. Acta Physica Sinica, 2017, 66(3): 038401. doi: 10.7498/aps.66.038401
    [13] Hu Rui-Xuan, Pan Bing-Yang, Yang Yu-Long, Zhang Wei-Hua. Brief retrospect of super-resolution optical microscopy techniques. Acta Physica Sinica, 2017, 66(14): 144209. doi: 10.7498/aps.66.144209
    [14] Zhao Guang-Yuan, Zheng Cheng, Fang Yue, Kuang Cui-Fang, Liu Xu. Progress of point-wise scanning superresolution methods. Acta Physica Sinica, 2017, 66(14): 148702. doi: 10.7498/aps.66.148702
    [15] Jiang Zhong-Jun, Liu Jian-Jun. Progress in far-field focusing and imaging with super-oscillation. Acta Physica Sinica, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [16] Li Shao-Dong, Chen Wen-Feng, Yang Jun, Ma Xiao-Yan. A fast two dimensional joint linearized bregman iteration algorithm for super-resolution inverse synthetic aperture radar imaging at low signal-to-noise ratios. Acta Physica Sinica, 2016, 65(3): 038401. doi: 10.7498/aps.65.038401
    [17] Li Long-Zhen, Yao Xu-Ri, Liu Xue-Feng, Yu Wen-Kai, Zhai Guang-Jie. Super-resolution ghost imaging via compressed sensing. Acta Physica Sinica, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [18] Zhi Shao-Tao, Zhang Hai-Jun, Zhang Dong-Xian. Super-resolution optical microscopic imaging method based on annular illumination with high numerical aperture. Acta Physica Sinica, 2012, 61(2): 024207. doi: 10.7498/aps.61.024207
    [19] Lu Jing, Li Hao, He Yi, Shi Guo-Hua, Zhang Yu-Dong. Superresolution in adaptive optics confocal scanning laser ophthalmoscope. Acta Physica Sinica, 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [20] Zhao Wei-Qian, Chen Shan-Shan, Feng Zheng-De. A confocal measurement method based on superresolution image restoration and shaped annular beam. Acta Physica Sinica, 2006, 55(7): 3363-3367. doi: 10.7498/aps.55.3363
Metrics
  • Abstract views:  17539
  • PDF Downloads:  521
  • Cited By: 0
Publishing process
  • Received Date:  02 February 2020
  • Accepted Date:  11 March 2020
  • Published Online:  20 May 2020

/

返回文章
返回