Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Super-resolution imaging of high-contrast target in elctromagnetic inverse scattering

Fan Qi-Meng Yin Cheng-You

Citation:

Super-resolution imaging of high-contrast target in elctromagnetic inverse scattering

Fan Qi-Meng, Yin Cheng-You
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A method for the super-resolution imaging of two-dimensional (2D) high-contrast targets is presented. There are two main methods to reconstruct unknown targets with super resolution. One is to illuminate the targets with specific incident fields and transform the information about the evanescent waves into the propagation waves, and the other is to adopt non-linear inversion methods where the multiple scattering within the objects are considered. For the specific-incident-field method, it has been proved that the orbital-angular-momentum (OAM)-carrying electromagnetic (EM) waves can be employed to image unknown targets with super resolution. In fact, OAM-carrying EM waves can transform the information about the evanescent waves into the propagation waves. Thus the resolution of imaging results can break the Rayleigh limit, namely super resolution. At present, the application of OAM-based super-resolution algorithm is only valid for weak scatters based on Born approximation. For the non-linear inversion methods, the contrast source inversion (CSI) is widely used to reconstruct unknown targets, including large-contrast or complex ones. In the CSI method, the information about the evanescent waves is naturally involved since the EM coupling within the objects is taken into account. Thus super resolution can also be achieved by the CSI method. This paper demonstrates a novel algorithm for super resolution of large-contrast targets by combining the OAM-based super-resolution technique and the CSI method. And the better resolution is achieved than by the CSI method. Firstly, 2D OAM EM waves are generated using uniform circular array of line source, and the region of interest is illuminated by the OAM beams of different topological charges. So the information about the evanescent waves can be converted into the propagation waves. Secondly, Born approximation is used to obtain the starting value of the contrast. In the process of evaluating the contrast, the super-resolution information is fully utilized. Thirdly, the starting value of the contrast source is evaluated using the starting value of the contrast. Then the CSI method starts to be iterated. Since the information about the evanescent waves is always involved in the iterating process, super-resolution reconstruction can be obtained and is better than that obtained by the CSI method. Numerical experiments show the accuracy of the algorithm by testing different scenarios. The resolution and outline of the target are reconstructed accurately even when the measurement data are corrupted by noise. To sum up, to reconstruct unknown targets with super resolution, one should firstly transform the information about the evanescent waves into the propagation waves, and secondly make full use of the super-resolution information in the inversion methods. The conclusion of this paper may provide an insight into the super resolution in EM inverse scattering.
      Corresponding author: Yin Cheng-You, cyouyin@sina.com
    • Funds: Project supported by the National Defense Pre-Research Foundation of China (Grant No. 51333020201).
    [1]

    Kirsch A 2016 An Introduction to the Mathematical Theory of Inverse Problems Second Edition (Beijing: World Publishing Corporation) pp191-195

    [2]

    Yang J G, Huang X T, Jin T 2014 Compressed Sensing Radar Imaging (Beijing: Science Press) p5 (in Chinese) [杨俊刚, 黄晓涛, 金添 2014 压缩感知雷达成像(北京: 科学出版社) 第5页]

    [3]

    Gao F Q, van Veen B D, Hagness S C 2015 IEEE Trans. Antennas Propag. 63 3540

    [4]

    Rubæk T, Meaney P M, Meincke P, Paulsen K D 2007 IEEE Trans. Antennas Propag. 55 2320

    [5]

    Slaney M, Kak A C, Larsen L E 1984 IEEE Trans. Microwave Theory Tech. 32 860

    [6]

    Wang Y M, Chew W C 1989 Int. J. Imaging Syst. Technol. 1 100

    [7]

    Kleinman R E, van den Berg P M 1992 J. Comput. Appl. Math. 42 17

    [8]

    van den Berg P M, Kleinman R E 1997 Inverse Prob. 13 1607

    [9]

    van den Berg P M, Van Broekhoven A L, Abubakar A 1999 Inverse Prob. 15 1325

    [10]

    van den Berg P M, Abubakar A, Fokkema J T 2003 Radio Sci. 38 8022

    [11]

    Oliveri G, Anselmi N, Massa A 2014 IEEE Trans. Antennas Propag. 62 5157

    [12]

    Anselmi N, Salucci M, Oliveri G, Massa A 2015 IEEE Trans. Antennas Propag. 63 4889

    [13]

    Pu M B, Wang C T, Wang Y Q, Luo X G 2017 Acta Phys. Sin. 66 144101 (in Chinese) [蒲明博, 王长涛, 王彦钦, 罗先刚 2017 物理学报 66 144101]

    [14]

    Guo C, Zhang Y 2017 Acta Phys. Sin. 66 147804 (in Chinese) [郭畅, 张岩 2017 物理学报 66 147804]

    [15]

    Betzig E, Trautman J K, Harris T D, Weiner J S, Kostelak R L 1991 Science 251 1468

    [16]

    Hartschuh A, Sanchez E J, Xie X S, Novotny L 2003 Phys. Rev. Lett. 90 095503

    [17]

    Huang F M, Zheludev N I 2009 Nano Lett. 9 1249

    [18]

    Wong A M H, Eleftheriades G V 2015 Sci. Rep. 5 8449

    [19]

    Dong X H, Wong A M H, Kim M, Eleftheriades G V 2017 Optica 4 1126

    [20]

    Cui T J, Chew W C, Yin X X, Hong W 2004 IEEE Trans. Antennas Propag. 52 1398

    [21]

    Aharonov Y, Anandan J, Popescu S, Vaidman L 1990 Phys. Rev. Lett. 64 2965

    [22]

    Berry M V 1994 J. Phys. A: Math. Gen. 27 L391

    [23]

    Ferreira P J S G, Kempf A 2006 IEEE Trans. Signal Process. 54 3732

    [24]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185

    [25]

    Mair A, Vaziri A, Weihs G, Zeilinger A 2001 Nature 412 313

    [26]

    Liu K, Cheng Y Q, Li X, Qin Y L, Wang H Q, Jiang Y W 2016 IEEE Antennas Wirel. Propag. Lett. 15 1873

    [27]

    Liu K, Cheng Y Q, Gao Y, Li X, Qin Y L, Wang H Q 2017 Appl. Phys. Lett. 110 164102

    [28]

    Li L L, Li F 2013 Phys. Rev. E 88 033205

    [29]

    Lerosey G, Rosney J D, Tourin A, Fink M 2007 Science 315 1119

    [30]

    Zelenchuk D, Fusco V 2013 IEEE Antennas Wirel. Propag. Lett. 12 284

    [31]

    Mohammadi S M, Daldorff L K S, Bergman J E S, Karlsson R L, Thidé B, Forozesh K, Carozzi T D, Rsham B 2010 IEEE Trans. Antennas Propag. 58 565

  • [1]

    Kirsch A 2016 An Introduction to the Mathematical Theory of Inverse Problems Second Edition (Beijing: World Publishing Corporation) pp191-195

    [2]

    Yang J G, Huang X T, Jin T 2014 Compressed Sensing Radar Imaging (Beijing: Science Press) p5 (in Chinese) [杨俊刚, 黄晓涛, 金添 2014 压缩感知雷达成像(北京: 科学出版社) 第5页]

    [3]

    Gao F Q, van Veen B D, Hagness S C 2015 IEEE Trans. Antennas Propag. 63 3540

    [4]

    Rubæk T, Meaney P M, Meincke P, Paulsen K D 2007 IEEE Trans. Antennas Propag. 55 2320

    [5]

    Slaney M, Kak A C, Larsen L E 1984 IEEE Trans. Microwave Theory Tech. 32 860

    [6]

    Wang Y M, Chew W C 1989 Int. J. Imaging Syst. Technol. 1 100

    [7]

    Kleinman R E, van den Berg P M 1992 J. Comput. Appl. Math. 42 17

    [8]

    van den Berg P M, Kleinman R E 1997 Inverse Prob. 13 1607

    [9]

    van den Berg P M, Van Broekhoven A L, Abubakar A 1999 Inverse Prob. 15 1325

    [10]

    van den Berg P M, Abubakar A, Fokkema J T 2003 Radio Sci. 38 8022

    [11]

    Oliveri G, Anselmi N, Massa A 2014 IEEE Trans. Antennas Propag. 62 5157

    [12]

    Anselmi N, Salucci M, Oliveri G, Massa A 2015 IEEE Trans. Antennas Propag. 63 4889

    [13]

    Pu M B, Wang C T, Wang Y Q, Luo X G 2017 Acta Phys. Sin. 66 144101 (in Chinese) [蒲明博, 王长涛, 王彦钦, 罗先刚 2017 物理学报 66 144101]

    [14]

    Guo C, Zhang Y 2017 Acta Phys. Sin. 66 147804 (in Chinese) [郭畅, 张岩 2017 物理学报 66 147804]

    [15]

    Betzig E, Trautman J K, Harris T D, Weiner J S, Kostelak R L 1991 Science 251 1468

    [16]

    Hartschuh A, Sanchez E J, Xie X S, Novotny L 2003 Phys. Rev. Lett. 90 095503

    [17]

    Huang F M, Zheludev N I 2009 Nano Lett. 9 1249

    [18]

    Wong A M H, Eleftheriades G V 2015 Sci. Rep. 5 8449

    [19]

    Dong X H, Wong A M H, Kim M, Eleftheriades G V 2017 Optica 4 1126

    [20]

    Cui T J, Chew W C, Yin X X, Hong W 2004 IEEE Trans. Antennas Propag. 52 1398

    [21]

    Aharonov Y, Anandan J, Popescu S, Vaidman L 1990 Phys. Rev. Lett. 64 2965

    [22]

    Berry M V 1994 J. Phys. A: Math. Gen. 27 L391

    [23]

    Ferreira P J S G, Kempf A 2006 IEEE Trans. Signal Process. 54 3732

    [24]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185

    [25]

    Mair A, Vaziri A, Weihs G, Zeilinger A 2001 Nature 412 313

    [26]

    Liu K, Cheng Y Q, Li X, Qin Y L, Wang H Q, Jiang Y W 2016 IEEE Antennas Wirel. Propag. Lett. 15 1873

    [27]

    Liu K, Cheng Y Q, Gao Y, Li X, Qin Y L, Wang H Q 2017 Appl. Phys. Lett. 110 164102

    [28]

    Li L L, Li F 2013 Phys. Rev. E 88 033205

    [29]

    Lerosey G, Rosney J D, Tourin A, Fink M 2007 Science 315 1119

    [30]

    Zelenchuk D, Fusco V 2013 IEEE Antennas Wirel. Propag. Lett. 12 284

    [31]

    Mohammadi S M, Daldorff L K S, Bergman J E S, Karlsson R L, Thidé B, Forozesh K, Carozzi T D, Rsham B 2010 IEEE Trans. Antennas Propag. 58 565

  • [1] Chen Xin-Miao, Li Hai-Ying, Wu Tao, Meng Xiang-Shuai, Li Feng-Xia. Near-field electromagnetic scattering of Bessel vortex beam by metal target. Acta Physica Sinica, 2023, 72(10): 100302. doi: 10.7498/aps.72.20222192
    [2] Luo Ze-Wei, Wu Ge, Chen Zhi, Deng Chi-Nan, Wan Rong, Yang Tao, Zhuang Zheng-Fei, Chen Tong-Sheng. Dual-channel structured illumination super-resolution quantitative fluorescence resonance energy transfer imaging. Acta Physica Sinica, 2023, 72(20): 208701. doi: 10.7498/aps.72.20230853
    [3] Gu Tong-Kai, Wang Lan-Lan, Guo Yang, Jiang Wei-Tao, Shi Yong-Sheng, Yang Shuo, Chen Jin-Ju, Liu Hong-Zhong. Realization of reconfigurable super-resolution imaging by liquid microlens arrays integrated on light disk. Acta Physica Sinica, 2023, 72(9): 099501. doi: 10.7498/aps.72.20222251
    [4] Gao Xi, Tang Li-Guang. Wideband and high efficiency orbital angular momentum generator based on bi-layer metasurface. Acta Physica Sinica, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [5] Jiang Ji-Heng, Yu Shi-Xing, Kou Na, Ding Zhao, Zhang Zheng-Ping. Beam steering of orbital angular momentum vortex wave based on planar phased array. Acta Physica Sinica, 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [6] Wang Jia-Lin, Yan Wei, Zhang Jia, Wang Lu-Wei, Yang Zhi-Gang, Qu Jun-Le. New advances in the research of stimulated emission depletion super-resolution microscopy. Acta Physica Sinica, 2020, 69(10): 108702. doi: 10.7498/aps.69.20200168
    [7] Qin Fei, Hong Ming-Hui, Cao Yao-Yu, Li Xiang-Ping. Advances in the far-field sub-diffraction limit focusing and super-resolution imaging by planar metalenses. Acta Physica Sinica, 2017, 66(14): 144206. doi: 10.7498/aps.66.144206
    [8] Hu Rui-Xuan, Pan Bing-Yang, Yang Yu-Long, Zhang Wei-Hua. Brief retrospect of super-resolution optical microscopy techniques. Acta Physica Sinica, 2017, 66(14): 144209. doi: 10.7498/aps.66.144209
    [9] Li Shao-Dong, Chen Yong-Bin, Liu Run-Hua, Ma Xiao-Yan. Analysis on the compressive sensing based narrow-band radar super resolution imaging mechanism of rapidly spinning targets. Acta Physica Sinica, 2017, 66(3): 038401. doi: 10.7498/aps.66.038401
    [10] Zhao Guang-Yuan, Zheng Cheng, Fang Yue, Kuang Cui-Fang, Liu Xu. Progress of point-wise scanning superresolution methods. Acta Physica Sinica, 2017, 66(14): 148702. doi: 10.7498/aps.66.148702
    [11] Jiang Zhong-Jun, Liu Jian-Jun. Progress in far-field focusing and imaging with super-oscillation. Acta Physica Sinica, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [12] Li Shao-Dong, Chen Wen-Feng, Yang Jun, Ma Xiao-Yan. A fast two dimensional joint linearized bregman iteration algorithm for super-resolution inverse synthetic aperture radar imaging at low signal-to-noise ratios. Acta Physica Sinica, 2016, 65(3): 038401. doi: 10.7498/aps.65.038401
    [13] Ding Liang, Liu Pei-Guo, He Jian-Guo, Joe LoVetri. An optimal layered inhomogeneous background used in microwave tomography system in metallic chamber. Acta Physica Sinica, 2014, 63(18): 184102. doi: 10.7498/aps.63.184102
    [14] Ding Liang, Liu Pei-Guo, He Jian-Guo, Amer Zakaria, Joe LoVetri. Enhancing microwave tomography in a circular metallic chamber by an inhomogeneous background. Acta Physica Sinica, 2014, 63(4): 044102. doi: 10.7498/aps.63.044102
    [15] Li Long-Zhen, Yao Xu-Ri, Liu Xue-Feng, Yu Wen-Kai, Zhai Guang-Jie. Super-resolution ghost imaging via compressed sensing. Acta Physica Sinica, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [16] Zhi Shao-Tao, Zhang Hai-Jun, Zhang Dong-Xian. Super-resolution optical microscopic imaging method based on annular illumination with high numerical aperture. Acta Physica Sinica, 2012, 61(2): 024207. doi: 10.7498/aps.61.024207
    [17] Wang Fang-Fang, Zhang Ye-Rong. An electromagnetic inverse scattering approach based on support vector machine. Acta Physica Sinica, 2012, 61(8): 084101. doi: 10.7498/aps.61.084101
    [18] Lu Jing, Li Hao, He Yi, Shi Guo-Hua, Zhang Yu-Dong. Superresolution in adaptive optics confocal scanning laser ophthalmoscope. Acta Physica Sinica, 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [19] Lü Hong, Ke Xi-Zheng. Scattering of a beam with orbital angular momentum by a single sphere. Acta Physica Sinica, 2009, 58(12): 8302-8308. doi: 10.7498/aps.58.8302
    [20] Su Zhi-Kun, Wang Fa-Qiang, Lu Yi-Qun, Jin Rui-Bo, Liang Rui-Sheng, Liu Song-Hao. Study on quantum cryptography using orbital angular momentum states of photons. Acta Physica Sinica, 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
Metrics
  • Abstract views:  8806
  • PDF Downloads:  250
  • Cited By: 0
Publishing process
  • Received Date:  02 February 2018
  • Accepted Date:  15 March 2018
  • Published Online:  20 July 2019

/

返回文章
返回