Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of beam shaping assembly based on 3.5 MeV radio-frequency quadrupole proton accelerator for boron neutron capture therapy

Tian Yong-Shun Hu Zhi-Liang Tong Jian-Fei Chen Jun-Yang Peng Xiang-Yang Liang Tian-Jiao

Citation:

Design of beam shaping assembly based on 3.5 MeV radio-frequency quadrupole proton accelerator for boron neutron capture therapy

Tian Yong-Shun, Hu Zhi-Liang, Tong Jian-Fei, Chen Jun-Yang, Peng Xiang-Yang, Liang Tian-Jiao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Boron neutron capture therapy (BNCT) is expected to be an effective method of improving the treatment results on malignant brain glioma and malignant melanoma, for which no successful treatment has been developed so far. The beam shaping assembly (BSA) of accelerator-based boron neutron capture therapy (A-BNCT) consists of a moderator, a reflector, gamma and thermal neutron shielding and a collimator. The BSA moderates the fast neutron produced in target to epithermal energy range. Design of BSA is one of the key jobs in BNCT project. An optimized study was conducted to design a beam shaping assembly for BNCT facility based on 3.5 MeV 10 mA radio-frequency quadrupole proton accelerator at Dongguan Neutron Science Center. In this simulation work, the neutron produced from the 7Li (p, n) 7Be reaction by 3.5 MeV proton is adopted as a neutron source term. In order to search for an optimized beam shaping assembly for accelerator-based BNCT, Monte Carlo simulation is carried out based on the parameters of moderator material and structure, the Gamma shielding, and the thermal neutron filter in the beam shaping assembly. The beam shaping assembly in this work consists of various moderator materials, teflon as reflector, Bi as gamma shielding, 6Li as thermal neutron filter, and lithium polyethylene as collimator. After comparing the simulation results of Fluental and LiF moderator materials, the beam shaping assembly configuration based on sandwich Fluental-LiF configuration is proposed. The sandwich Fluental-LiF configuration is made up of Fluental and LiF layer by layer, like a sandwich structure, and each layer is 2 cm thick. According to the beam quality requirement of the IAEA-tecdoc-1223 report, the optimized epithermal neutron flux in air at the exit of BSA of the sandwich Fluental-LiF configuration is 9.14×108 n/(cm2·s), which is greater than those of the Fluental configuration (7.81×108 n/(cm2·s)) and LiF configuration (8.79×108 n/(cm2·s)), when the ratio of fast neutron component to gamma ray component to thermal neutron is less than the limiting value of IAEA recommendation. Subsequently, the depth distribution of the equivalent doses in the Snyder head phantom is calculated to evaluate the treatment characteristic. The simulation results show that the therapy rate of the beam shaping assembly based on the sandwich Fluental-LiF configuration is basically equal to that of the Fluental configuration and better than that of the LiF configuration, and the therapy time is less than that of the Fluental configuration. This means that the beam shaping assembly based on the sandwich Fluental-LiF configuration is one of the suitable options for our accelerator-based BNCT.
      Corresponding author: Liang Tian-Jiao, liangtj@ihep.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0401504) and the Project of Integration of Industry, Education, and Research of Guangdong Province, China (Grant No. 2015B090901048).
    [1]

    Locher G L 1936 Am. J. Roentgenol. 36 1

    [2]

    Soloway A H, Wright R L, Messer J R 1961 J. Pharmacol. Exp. Ther. 134 117

    [3]

    Sweet W H, Soloway A H, Wright R L 1962 J. Pharmacol. Exp. Ther. 137 263

    [4]

    Soloway A H, Hatanaka H, Davis M A 1967 J. Med. Chem. 10 714

    [5]

    Choi J R, Clement S D, Harling O K, Zamenhof R G 1990 Basic Life Sci. 54 201

    [6]

    Capoulat M E, Minsky D M, Kreiner A J 2014 Phys. Medica 30 133

    [7]

    Phoenix B, Green S, Scott M C, Bennett J R J, Edgecock T R 2015 Appl. Radiat. Isot. 106 49

    [8]

    Rahmani F, Shahriari M 2011 Ann. Nucl. Energy 38 404

    [9]

    Cheng D W, Lu J B, Yang D, Liu Y M, Wang H D, Ma K Y 2012 Chin. Phys. C 36 905

    [10]

    Minsky D M, Kreiner A J 2014 Appl. Radiat. Isot. 88 233

    [11]

    Herrera M S, Gonzalez S J, Burlon A A, Minsky D M, Kreiner A J 2011 Appl. Radiat. Isot. 69 1870

    [12]

    Xiao G, Wang Z Q, Zhang B A, Zhu J S 2006 Chinese J. Medical Physics 23 5 (in Chinese) [肖刚, 王仲奇, 张本爱, 朱建士 2006 中国医学物理学杂志 23 5]

    [13]

    Yoshida F, Yamamoto T, Nakai K, Zaboronok A, Matsumura A 2015 Appl. Radiat. Isot. 106 247

    [14]

    Guan X L, Luo Z H, Fu S N 2003 Chinese J. Nuclear Science and Engineering 23 73 (in Chinese) [关遐龄, 罗紫华, 傅世年 2003 核科学与工程 23 73]

    [15]

    Bleuel D L 2003 Ph. D. Dissertation (Berkeley: University of California at Berkeley)

    [16]

    IAEA 2001 Current Status of Neutron Capture Therapy (Vienna: International Atomic Energy Agency) pp7-8

    [17]

    Snyder W S, Fisher Jr H L, Ford M L, Warner G G 1969 J. Nucl. Medicine 3 7

    [18]

    Pelowitz D G 2005 MCNPX User's Manual Version 250 (Los Alamos: Los Alamos National Laboratory) p1

    [19]

    White D R, Griffith R V, Wilson I J 1992 J. ICRU 1 1

    [20]

    Rahmani F, Shahriari M 2011 Ann. Nucl. Energy 38 404

    [21]

    Lee C, Zhou X R, Harmon F, Harker Y 2000 Med. Phys. 27 192

    [22]

    Coderre J A, Makar M S, Micca P L, Nawrocky M M, Liu H B, Joel D D, Slatkin D N, Amols H I 1993 Int. J. Radiat. Oncol. Biol. Phys. 27 1121

  • [1]

    Locher G L 1936 Am. J. Roentgenol. 36 1

    [2]

    Soloway A H, Wright R L, Messer J R 1961 J. Pharmacol. Exp. Ther. 134 117

    [3]

    Sweet W H, Soloway A H, Wright R L 1962 J. Pharmacol. Exp. Ther. 137 263

    [4]

    Soloway A H, Hatanaka H, Davis M A 1967 J. Med. Chem. 10 714

    [5]

    Choi J R, Clement S D, Harling O K, Zamenhof R G 1990 Basic Life Sci. 54 201

    [6]

    Capoulat M E, Minsky D M, Kreiner A J 2014 Phys. Medica 30 133

    [7]

    Phoenix B, Green S, Scott M C, Bennett J R J, Edgecock T R 2015 Appl. Radiat. Isot. 106 49

    [8]

    Rahmani F, Shahriari M 2011 Ann. Nucl. Energy 38 404

    [9]

    Cheng D W, Lu J B, Yang D, Liu Y M, Wang H D, Ma K Y 2012 Chin. Phys. C 36 905

    [10]

    Minsky D M, Kreiner A J 2014 Appl. Radiat. Isot. 88 233

    [11]

    Herrera M S, Gonzalez S J, Burlon A A, Minsky D M, Kreiner A J 2011 Appl. Radiat. Isot. 69 1870

    [12]

    Xiao G, Wang Z Q, Zhang B A, Zhu J S 2006 Chinese J. Medical Physics 23 5 (in Chinese) [肖刚, 王仲奇, 张本爱, 朱建士 2006 中国医学物理学杂志 23 5]

    [13]

    Yoshida F, Yamamoto T, Nakai K, Zaboronok A, Matsumura A 2015 Appl. Radiat. Isot. 106 247

    [14]

    Guan X L, Luo Z H, Fu S N 2003 Chinese J. Nuclear Science and Engineering 23 73 (in Chinese) [关遐龄, 罗紫华, 傅世年 2003 核科学与工程 23 73]

    [15]

    Bleuel D L 2003 Ph. D. Dissertation (Berkeley: University of California at Berkeley)

    [16]

    IAEA 2001 Current Status of Neutron Capture Therapy (Vienna: International Atomic Energy Agency) pp7-8

    [17]

    Snyder W S, Fisher Jr H L, Ford M L, Warner G G 1969 J. Nucl. Medicine 3 7

    [18]

    Pelowitz D G 2005 MCNPX User's Manual Version 250 (Los Alamos: Los Alamos National Laboratory) p1

    [19]

    White D R, Griffith R V, Wilson I J 1992 J. ICRU 1 1

    [20]

    Rahmani F, Shahriari M 2011 Ann. Nucl. Energy 38 404

    [21]

    Lee C, Zhou X R, Harmon F, Harker Y 2000 Med. Phys. 27 192

    [22]

    Coderre J A, Makar M S, Micca P L, Nawrocky M M, Liu H B, Joel D D, Slatkin D N, Amols H I 1993 Int. J. Radiat. Oncol. Biol. Phys. 27 1121

  • [1] Xun Zhi-Peng, Hao Da-Peng. Monte Carlo simulation of bond percolation on square lattice with complex neighborhoods. Acta Physica Sinica, 2022, 71(6): 066401. doi: 10.7498/aps.71.20211757
    [2] Wang Li-Min, Duan Bing-Huang, Xu Xian-Guo, Li Hao, Chen Zhi-Jun, Yang Kun-Jie, Zhang Shuo. Simulation of neutron irradiation damage in lead lanthanum zirconate titanate by Monte Carlo method. Acta Physica Sinica, 2022, 71(7): 076101. doi: 10.7498/aps.71.20212041
    [3] Huang Guang-Wei, Wu Kun, Chen Ye, Li Lin-Xiang, Zhang Si-Yuan, Wang Zun-Gang, Zhu Hong-Ying, Zhou Chun-Zhi, Zhang Yi-Yun, Liu Zhi-Qiang, Yi Xiao-Yan, Li Jin-Min. Response to 14 MeV neutrons for single-crystal diamond detectors. Acta Physica Sinica, 2021, 70(20): 202901. doi: 10.7498/aps.70.20210891
    [4] Gao Song, Cao Wen-Tian, Huang Xin-Rui, Bao Shang-Lian. Research progress of 10B concentration and distribution measurement in boron neutron capture therapy. Acta Physica Sinica, 2021, 70(14): 148701. doi: 10.7498/aps.70.20201794
    [5] Ren Jie, Ruan Xi-Chao, Chen Yong-Hao, Jiang Wei, Bao Jie, Luan Guang-Yuan, Zhang Qi-Wei, Huang Han-Xiong, Wang Zhao-Hui, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Gu Min-Hao, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng. In-beam γ-rays of back-streaming white neutron source at China Spallation Neutron Source. Acta Physica Sinica, 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [6] Tian Zi-Ning, Ouyang Xiao-Ping, Chen Wei, Wang Xue-Mei, Deng Ning, Liu Wen-Biao, Tian Yan-Jie. Source boundary parameter of Monte Carlo inversion technology based on virtual source principle. Acta Physica Sinica, 2019, 68(23): 232901. doi: 10.7498/aps.68.20191095
    [7] Chen Yuan, Wang Xiao-Fang, Shao Guang-Chao. Characteristics and parameter optimization of electron beam radiography. Acta Physica Sinica, 2015, 64(15): 154101. doi: 10.7498/aps.64.154101
    [8] Zhang Fa-Qiang, Qi Jian-Min, Zhang Jian-Hua, Li Lin-Bo, Chen Ding-Yang, Xie Hong-Wei, Yang Jian-Lun, Chen Jin-Chuan. A method of fast-neutron imaging with energy threshold based on an imaging plate. Acta Physica Sinica, 2014, 63(12): 128701. doi: 10.7498/aps.63.128701
    [9] Yang Yi-Wei, Yan Xiao-Song, Liu Rong, Lu Xin-Xin, Jiang Li, Wang Mei, Lin Ju-Fang. Measurements and analyses of uranium reaction rates on a depleted uranium shell with D-T neutrons. Acta Physica Sinica, 2013, 62(2): 022801. doi: 10.7498/aps.62.022801
    [10] Hua Yu-Chao, Dong Yuan, Cao Bing-Yang. Monte Carlo simulation of phonon ballistic diffusive heat conduction in silicon nanofilm. Acta Physica Sinica, 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [11] Lan Mu, Xiang Gang, Gu Gang-Xu, Zhang Xi. A Monte Carlo simulation study on growth mechanism of horizontal nanowires on crystal surface. Acta Physica Sinica, 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [12] Xiao Yuan, Wang Xiao-Fang, Teng Jian, Chen Xiao-Hu, Chen Yuan, Hong Wei. Simulation study of radiography using laser-produced electron beam. Acta Physica Sinica, 2012, 61(23): 234102. doi: 10.7498/aps.61.234102
    [13] Fan Xiao-Hui, Zhao Xing-Yu, Wang Li-Na, Zhang Li-Li, Zhou Heng-Wei, Zhang Jin-Lu, Huang Yi-Neng. Monte Carlo simulations of the relaxation dynamics of the spatial relaxation modes in the molecule-string model. Acta Physica Sinica, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [14] Chen Shan, Wu Qing-Yun, Chen Zhi-Gao, Xu Gui-Gui, Huang Zhi-Gao. Ferromagnetism of C doped ZnO: first-principles calculation and Monte Carlo simulation. Acta Physica Sinica, 2009, 58(3): 2011-2017. doi: 10.7498/aps.58.2011
    [15] Xiong Kai-Guo, Feng Guo-Lin, Hu Jing-Guo, Wan Shi-Quan, Yang Jie. Monte Carlo simulation of the record-breaking high temperature events of climate changes. Acta Physica Sinica, 2009, 58(4): 2843-2852. doi: 10.7498/aps.58.2843
    [16] Gao Fei, Ryoko Yamada, Mitsuo Watanabe, Liu Hua-Feng. Use of Monte Carlo simulations for the scatter events analysis of PET scanners. Acta Physica Sinica, 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
    [17] Xu Lan-Qing, Li Hui, Xiao Zheng-Ying. Discussion on backscattered photon numbers and their scattering events in a turbid media. Acta Physica Sinica, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [18] He Qing-Fang, Xu Zheng, Liu De-Ang, Xu Xu-Rong. Monte Carlo simulation of the effect of impact ionization in thin-film electroluminescent devices. Acta Physica Sinica, 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [19] Wang Zhi-Jun, Dong Li-Fang, Shang Yong. Monte Carlo simulation of optical emission spectra in electron assisted chemical vapor deposition of diamond. Acta Physica Sinica, 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [20] Wang Jian-Hua, Jin Chuan-En. Application of Monte Carlo simulation to the research of ions transport plasma sheaths of glow discharge. Acta Physica Sinica, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
Metrics
  • Abstract views:  8992
  • PDF Downloads:  362
  • Cited By: 0
Publishing process
  • Received Date:  02 March 2018
  • Accepted Date:  02 April 2018
  • Published Online:  20 July 2019

/

返回文章
返回