Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Monte Carlo simulations of proton-induced displacement damage in SiGe alloys and SiGe/Si heterostructures

XING Tian LIU Shuhuan WANG Xuan WANG Chao ZHOU Junye ZHANG Ximin CHEN Wei

Citation:

Monte Carlo simulations of proton-induced displacement damage in SiGe alloys and SiGe/Si heterostructures

XING Tian, LIU Shuhuan, WANG Xuan, WANG Chao, ZHOU Junye, ZHANG Ximin, CHEN Wei
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • SiGe-based electronics have a promising prospect in the field of space exploration due to the controllable bandgap of SiGe alloys and high compatibility with Si technology. However, they may be susceptible to the influence of energetic particles in space radiation environments. In order to explain the potential displacement damage in SiGe-based electronics, Monte Carlo simulations are conducted to investigate the displacement damage in SiGe alloys and SiGe/Si heterostructures induced by 1–1000 MeV protons. The displacement damage in SiGe alloys is studied by the energy spectra and types of proton-induced primary knock-on atoms (PKAs) and the related damage energy distribution, while the displacement damage in SiGe/Si heterostructure is studied by the damage energy distribution caused by forward- and reverse-incident protons. Low-energy protons (1–100 MeV) are primarily generated by Si PKAs and Ge PKAs in SiGe alloys through Coulomb scattering and elastic collisions, and the corresponding damage energy distribution exhibits a distinct Bragg peak at the end of the proton range. Meanwhile, high-energy protons (300–1000 MeV) cause significant inelastic collisions in SiGe alloys, leading to a series of other PKA types, with the associated damage energy distribution predominantly located in the front of the proton range. In addition, the damage energy in SiGe/Si heterostructures generally decreases as the proton energy increases, and compared with the forward-incident protons, the reverse-incident protons (10 MeV and 100 MeV) cause greater damage energy on the side of Si substrate at the interface, and result in more noticeable fluctuations in damage energy on both sides of the interface, leading to severe displacement damage. Besides, Ge content can affect the PKA species, damage energy distribution, and nonionizing energy loss. As for high-energy protons, high Ge content may lead to a great nonionizing energy loss, whereas the Ge content has an insignificant effect on the total damage energy of small-size SiGe/Si heterostructures. In summary, this work indicates that the proton-induced displacement damage in SiGe alloys and SiGe/Si heterostructures is greatly dependent on the proton energy, and low-energy protons are prone to generating massive self-recoil atoms, inducing significant displacement damage in small-size SiGe/Si heterostructures, which will provide theoretical basis and reference for studying displacement damage effect and developing radiation hardening techniques of SiGe-based electronics.
  • 图 1  质子入射靶材示意图(h为SiGe合金层的厚度) (a) SiGe合金; (b) SiGe/Si异质结构

    Figure 1.  A schematic diagram of protons incident on the targets (h is the thickness of the SiGe layer): (a) SiGe alloy; (b) SiGe/Si heterostructure.

    图 2  质子在Si, Ge和SiGe合金中的射程和非电离能量损失 (a)射程; (b)非电离能量损失; (c) 图(b)中区域1的局部放大图; (d) 图(b)中区域2的局部放大图

    Figure 2.  Projected range and the NIEL of protons in Si, Ge, and SiGe alloys: (a) Projected range; (b) NIEL; (c) the mangified view of Zone 1 in panel (b); (d) the mangified view of Zone 2 in panel (b).

    图 3  质子在SiGe合金中产生的PKA能谱和前6种PKA比例 (a) Si0.3Ge0.7的PKA能谱; (b) Si0.3Ge0.7的PKA比例; (c) Si0.5Ge0.5的PKA能谱; (d) Si0.5Ge0.5的PKA比例; (e) Si0.7Ge0.3的PKA能谱; (f) Si0.7Ge0.3的PKA比例

    Figure 3.  Energy spectra of proton-induced PKAs and the proportion of top six types of PKAs in SiGe alloys: (a) PKA enegy spectra of Si0.3Ge0.7; (b) PKA proportions of Si0.3Ge0.7; (c) PKA enegy spectra of Si0.5Ge0.5; (d) PKA proportions of Si0.5Ge0.5; (e) PKA enegy spectra of Si0.7Ge0.3; (f) PKA proportions of Si0.7Ge0.3.

    图 4  质子在SiGe合金中产生的损伤能随入射深度的分布 (a) 1 MeV质子; (b) 10 MeV质子; (c) 100 MeV质子; (d) 300 MeV质子; (e) 500 MeV质子; (f) 1000 MeV质子

    Figure 4.  Distribution of damage energy in SiGe alloys produced by protons along the penetration depth: (a) 1 MeV proton; (b) 10 MeV proton; (c) 100 MeV proton; (d) 300 MeV proton; (e) 500 MeV proton; (f) 1000 MeV proton.

    图 5  质子在SiGe合金中通过库仑散射产生的损伤能随入射深度的分布 (a) 1 MeV质子; (b) 10 MeV质子; (c) 100 MeV质子; (d) 300 MeV质子; (e) 500 MeV质子; (f) 1000 MeV质子

    Figure 5.  Distribution of damage energy in SiGe alloys produced by protons via the Coulomb scattering along the penetration depth: (a) 1 MeV proton; (b) 10 MeV proton; (c) 100 MeV proton; (d) 300 MeV proton; (e) 500 MeV proton; (f) 1000 MeV proton.

    图 6  质子在SiGe/Si异质结构中产生的损伤能随入射深度的分布 (a)质子正向入射Si0.3Ge0.7/Si; (b)质子反向入射Si0.3Ge0.7/Si; (c)质子正向入射Si0.5Ge0.5/Si; (d)质子反向入射Si0.5Ge0.5/Si; (e)质子正向入射Si0.7Ge0.3/Si; (f)质子反向入射Si0.7Ge0.3/Si

    Figure 6.  Distribution of damage energy in SiGe/Si heterostructures produced by protons along the penetration depth: (a) Proton incident forward on Si0.3Ge0.7/Si; (b) proton incident reversely on Si0.3Ge0.7/Si; (c) proton incident forward on Si0.5Ge0.5/Si; (d) proton incident reversely on Si0.5Ge0.5/Si; (e) proton incident forward on Si0.7Ge0.3/Si; (f) proton incident reversely on Si0.7Ge0.3/Si.

    图 7  SiGe/Si异质结构的SiGe合金层和对照组Si层中产生的总损伤能 (a)正向入射; (b)反向入射

    Figure 7.  Total damage energy produced in the SiGe layer of SiGe/Si heterostructures and in the Si layer of control groups: (a) Forward incidence; (b) reverse incidence.

  • [1]

    Li L, Bi R, Dong Z Y, Ye C Q, Xie J, Wang C L, Li X M, Pey K L, Li M, Wu X 2024 Electron 2 e32Google Scholar

    [2]

    Böck J, Aufinger K, Boguth S, Dahl C, Knapp H, Liebl W, Manger D, Meister T F, Pribil A, Wursthorn J, Lachner R, Heinemann B, Rücker H, Fox A, Barth R, Fischer G, Marschmeyer S, Schmidt D, Trusch A, Wipf C 2015 IEEE Bipolar/BiCMOS Circuits and Technology Meeting - BCTM Octorber 26—28, 2015 pp121—124

    [3]

    李培, 董志勇, 郭红霞, 张凤祁, 郭亚鑫, 彭治钢, 贺朝会 2024 物理学报 73 044301Google Scholar

    Li P, Dong Z Y, Guo H X, Zhang F Q, Guo Y X, Peng Z G, He C H 2024 Acta Phys. Sin. 73 044301Google Scholar

    [4]

    马羽, 张培健, 徐学良, 陈仙, 易孝辉 2023 微电子学 53 272

    Ma Y, Zhang P J, Xu X L, Chen X, Yi X H 2023 Microelectron. 53 272

    [5]

    Chancellor J, Nowadly C, Williams J, Aunon-Chancellor S, Chesal M, Looper J, Newhauser W 2021 J. Environ. Sci. Health Part C 39 113Google Scholar

    [6]

    Cressler J D 2013 IEEE Trans. Nucl. Sci. 60 1992Google Scholar

    [7]

    何欢, 白雨蓉, 田赏, 刘方, 臧航, 柳文波, 李培, 贺朝会 2024 物理学报 73 052402Google Scholar

    He H, Bai Y R, Tian S, Liu F, Zang H, Liu W B, Li P, He C H 2024 Acta Phys. Sin. 73 052402Google Scholar

    [8]

    白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会 2021 物理学报 70 172401Google Scholar

    Bai Y R, Li Y H, Liu F, Liao W L, He H, Yang W T, He C H 2021 Acta Phys. Sin. 70 172401Google Scholar

    [9]

    Insoo J, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summers G P, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1924Google Scholar

    [10]

    朱金辉, 韦源, 谢红刚, 牛胜利, 黄流兴 2014 物理学报 63 066102Google Scholar

    Zhu J H, Wei Y, Xie H G, Niu S L, Huang L X 2014 Acta Phys. Sin. 63 066102Google Scholar

    [11]

    Sun Y B, Fu J, Xu J, Wang Y D, Zhou W, Zhang W, Cui J, Li G Q, Liu Z H 2013 Nucl. Instrum. Methods Phys. Res. , Sect. B 312 77Google Scholar

    [12]

    李永宏, 寇勃晨, 赵耀林, 贺朝会, 于庆奎 2018 原子能科学技术 52 1735Google Scholar

    Li Y H, Kou B C, Zhao Y L, He C H, Yu Q K 2018 At. Energ. Sci. Technol. 52 1735Google Scholar

    [13]

    Fan J Q, Tan Q, Hao J H 2022 AIP Adv. 12 095304Google Scholar

    [14]

    白雨蓉, 李培, 何欢, 刘方, 李薇, 贺朝会 2024 物理学报 73 052401Google Scholar

    Bai Y R, Li P, He H, Liu F, Li W, He C H 2024 Acta Phys. Sin. 73 052401Google Scholar

    [15]

    申帅帅, 贺朝会, 李永宏 2018 物理学报 67 182401Google Scholar

    Shen S S, He C H, Li Y H 2018 Acta Phys. Sin. 67 182401Google Scholar

    [16]

    李培, 贺朝会, 郭红霞, 张晋新, 魏佳男, 刘默寒 2022 太赫兹科学与电子信息学报 20 523Google Scholar

    Li P, He C H, Guo H X, Zhang J X, Wei J N, Liu M H 2022 J. Terahertz Sci. Electron. Inf. Technol. 20 523Google Scholar

    [17]

    张晋新, 郭红霞, 吕玲, 王信, 潘霄宇 2022 太赫兹科学与电子信息学报 20 869Google Scholar

    Zhang J X, Guo H X, Lü L, Wang X, Pan X Y 2022 J. Terahertz Sci. Electron. Inf. Technol. 20 869Google Scholar

    [18]

    Pan X Y, Guo H X, Feng Y H, Liu Y N, Zhang J X, Li Z, Luo Y H, Zhang F Q, Wang T, Zhao W, Ding L L, Xu J Y 2022 Sci. China: Technol. Sci. 65 1193Google Scholar

    [19]

    Sotskov D I, Elesin V V, Kuznetsov A G, Zhidkov N M, Metelkin I O, Amburkin K M, Amburkin D M, Usachev N A, Boychenko D V, Elesina V V 2020 IEEE Trans. Nucl. Sci. 67 2396Google Scholar

    [20]

    Sotskov D I, Kuznetsov A G, Elesin V V, Selishchev I A, Kotov V N, Nikiforov A Y 2021 21th European Conference on Radiation and Its Effects on Components and Systems (RADECS) September13-17 2021 pp1-4

    [21]

    Li P, He C H, Guo H X, Li Y H, Wei J N 2022 IEEE Trans. Nucl. Sci. 69 1051Google Scholar

    [22]

    Haugerud B M, Pratapgarhwala M M, Comeau J P, Sutton A K, Prakash A P G, Cressler J D, Marshall P W, Marshall C J, Ladbury R L, El-Diwany M, Mitchell C, Rockett L, Bach T, Lawrence R, Haddad N 2006 Solid-State Electron. 50 181Google Scholar

    [23]

    Diez S, Lozano M, Pellegrini G, Campabadal F, Diez I, Knoll D, Heinemann B, Ullan M 2009 IEEE Trans. Nucl. Sci. 56 1931Google Scholar

    [24]

    Li Z Q, Liu S H, Adekoya M A, Ren X T, Zhang J, Liu S Y, Li L 2021 Microelectron. Reliab. 127 114396Google Scholar

    [25]

    Jarrin T, Jay A, Raine M, Mousseau N, Hémeryck A, Richard N 2020 IEEE Trans. Nucl. Sci. 67 1273Google Scholar

    [26]

    Xing T, Liu S H, Wang X, Adekoya M A, Wang C, Li H D, Meng F J, Du X Z, Sun Y F, Zhu S J, Chen W, Li K, Zheng X H 2023 Radiat. Eff. Defects Solids 178 1384Google Scholar

    [27]

    Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya A, Banerjee S, Barrand G, Beck B R, Bogdanov A G, Brandt D, Brown J M C, Burkhardt H, Canal P, Cano-Ott D, Chauvie S, Cho K, Cirrone G A P, Cooperman G, Cortés-Giraldo M A, Cosmo G, Cuttone G, Depaola G, Desorgher L, Dong X, Dotti A, Elvira V D, Folger G, Francis Z, Galoyan A, Garnier L, Gayer M, Genser K L, Grichine V M, Guatelli S, Guèye P, Gumplinger P, Howard A S, Hřivnáčová I, Hwang S, Incerti S, Ivanchenko A, Ivanchenko V N, Jones F W, Jun S Y, Kaitaniemi P, Karakatsanis N, Karamitros M, Kelsey M, Kimura A, Koi T, Kurashige H, Lechner A, Lee S B, Longo F, Maire M, Mancusi D, Mantero A, Mendoza E, Morgan B, Murakami K, Nikitina T, Pandola L, Paprocki P, Perl J, Petrović I, Pia M G, Pokorski W, Quesada J M, Raine M, Reis M A, Ribon A, Ristić Fira A, Romano F, Russo G, Santin G, Sasaki T, Sawkey D, Shin J I, Strakovsky I I, Taborda A, Tanaka S, Tomé B, Toshito T, Tran H N, Truscott P R, Urban L, Uzhinsky V, Verbeke J M, Verderi M, Wendt B L, Wenzel H, Wright D H, Wright D M, Yamashita T, Yarba J, Yoshida H 2016 Nucl. Instrum. Methods Phys. Res. , Sect. A 835 186Google Scholar

    [28]

    Douglas J P 2004 Semicond. Sci. Technol. 19 R75Google Scholar

    [29]

    Raine M, Jay A, Richard N, Goiffon V, Girard S, Gaillardin M, Paillet P 2017 IEEE Trans. Nucl. Sci. 64 133Google Scholar

    [30]

    Tylka A J, Adams J H, Boberg P R, Brownstein B, Dietrich W F, Flueckiger E O, Petersen E L, Shea M A, Smart D F, Smith E C 1997 IEEE Trans. Nucl. Sci. 44 2150Google Scholar

    [31]

    Mesick K E, Bartlett K D, Coupland D D S, Stonehill L C 2019 Nucl. Instrum. Methods Phys. Res. , Sect. A 948 162774Google Scholar

    [32]

    Ye E L, Lai Y F, Shen C X, Hou Y J, Nan H J 2025 Radiat. Phys. Chem. 228 112417Google Scholar

    [33]

    Robinson M T, Torrens I M 1974 Phys. Rev. B 9 5008Google Scholar

    [34]

    Akkerman A, Barak J 2006 IEEE Trans. Nucl. Sci. 53 3667Google Scholar

    [35]

    Song C, Liu S H, Wang X, Mu H B, Bai Y R, Li H D, Xing T, He C H, Chen W 2023 Nucl. Instrum. Methods Phys. Res., Sect. B 545 165144Google Scholar

    [36]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. , Sect. B 268 1818Google Scholar

  • [1] LIAO Liangxin, ZHANG Jieyin, LIU Fangze, YAN Mouhui, MING Ming, FU Binxiao, ZHANG Xinding, ZHANG Jianjun. High-quality Si/SiGe heterojunctions on transferred SiGe nanomembranes. Acta Physica Sinica, doi: 10.7498/aps.74.20250164
    [2] Bai Yu-Rong, Li Pei, He Huan, Liu Fang, Li Wei, He Chao-Hui. Simulation of displacement damage of InP induced by protons and α-particles in low Earth orbit. Acta Physica Sinica, doi: 10.7498/aps.73.20231499
    [3] Yang Wei-Tao, Wu Yi-Chen, Xu Rui-Ming, Shi Guang, Ning Ti, Wang Bin, Liu Huan, Guo Zhong-Jie, Yu Song-Lin, Wu Long-Sheng. Geant4 simulation of Hg1–xCdxTe infrared focal plane array image sensor space proton displacement damage and total ionizing dose effects. Acta Physica Sinica, doi: 10.7498/aps.73.20241246
    [4] He Huan, Bai Yu-Rong, Tian Shang, Liu Fang, Zang Hang, Liu Wen-Bo, Li Pei, He Chao-Hui. Simulation of displacement damage induced by protons incident on AlxGa1–xN materials. Acta Physica Sinica, doi: 10.7498/aps.73.20231671
    [5] Wang Li-Min, Duan Bing-Huang, Xu Xian-Guo, Li Hao, Chen Zhi-Jun, Yang Kun-Jie, Zhang Shuo. Simulation of neutron irradiation damage in lead lanthanum zirconate titanate by Monte Carlo method. Acta Physica Sinica, doi: 10.7498/aps.71.20212041
    [6] Li Wei, Bai Yu-Rong, Guo Hao-Xuan, He Chao-Hui, Li Yong-Hong. Geant4 simulation of neutron displacement damage effect in InP. Acta Physica Sinica, doi: 10.7498/aps.71.20211722
    [7] Bai Yu-Rong, Li Yong-Hong, Liu Fang, Liao Wen-Long, He Huan, Yang Wei-Tao, He Chao-Hui. Simulation of displacement damage in indium phosphide induced by space heavy ions. Acta Physica Sinica, doi: 10.7498/aps.70.20210303
    [8] Hao Rui-Jing, Guo Hong-Xia, Pan Xiao-Yu, Lü Ling, Lei Zhi-Feng, Li Bo, Zhong Xiang-Li, Ouyang Xiao-Ping, Dong Shi-Jian. Neutron-induced displacement damage effect and mechanism of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, doi: 10.7498/aps.69.20200714
    [9] Zhu Bing-Hui, Yang Ai-Xiang, Niu Shu-Tong, Chen Xi-Meng, Zhou Wang Shao, Jian-Xiong. Simulation analyses of 100-keV as well as low and high energy protons through insulating nanocapillary. Acta Physica Sinica, doi: 10.7498/aps.67.20171701
    [10] Shen Shuai-Shuai, He Chao-Hui, Li Yong-Hong. Non-ionization energy loss of proton in different regions in SiC. Acta Physica Sinica, doi: 10.7498/aps.67.20181095
    [11] Zou Jun-Hui, Zhang Juan. Photonic bandgap compensation and extension for hybrid quasiperiodic heterostructures. Acta Physica Sinica, doi: 10.7498/aps.65.014214
    [12] Feng Song, Xue Bin, Li Lian-Bi, Zhai Xue-Jun, Song Li-Xun, Zhu Chang-Jun. Analysis of Si/SiGe/Si double heterojunction band of a novelstructure of PIN electronic modulation. Acta Physica Sinica, doi: 10.7498/aps.65.054201
    [13] Tang Du, He Chao-Hui, Zang Hang, Li Yong-Hong, Xiong Cen, Zhang Jin-Xin, Zhang Peng, Tan Peng-Kang. Multi-scale simulations of single particle displacement damage in silicon. Acta Physica Sinica, doi: 10.7498/aps.65.084209
    [14] Wen Lin, Li Yu-Dong, Guo Qi, Ren Di-Yuan, Wang Bo, Maria. Analysis of ionizing and department damage mechanism in proton-irradiation-induced scientific charge-coupled device. Acta Physica Sinica, doi: 10.7498/aps.64.024220
    [15] Zhu Jin-Hui, Wei Yuan, Xie Hong-Gang, Niu Sheng-Li, Huang Liu-Xing. Numerical investigation of non-ionizing energy loss of proton at an energy range of 300 eV to 1 GeV in silicon. Acta Physica Sinica, doi: 10.7498/aps.63.066102
    [16] Zhang Ming-Lan, Yang Rui-Xia, Li Zhuo-Xin, Cao Xing-Zhong, Wang Bao-Yi, Wang Xiao-Hui. Study on proton irradiation induced defects in GaN thick film. Acta Physica Sinica, doi: 10.7498/aps.62.117103
    [17] Wang Zu-Jun, Tang Ben-Qi, Xiao Zhi-Gang, Liu Min-Bo, Huang Shao-Yan, Zhang Yong. Experimental analysis of charge transfer efficiency degradation of charge coupled devices induced by proton irradiation. Acta Physica Sinica, doi: 10.7498/aps.59.4136
    [18] He Qing-Fang, Xu Zheng, Liu De-Ang, Xu Xu-Rong. Monte Carlo simulation of the effect of impact ionization in thin-film electroluminescent devices. Acta Physica Sinica, doi: 10.7498/aps.55.1997
    [19] He Bao-Ping, Chen Wei, Wang Gui-Zhen. A comparison of ionizing radiation damage in CMOS devices from 60Co Gamma rays, electrons and protons. Acta Physica Sinica, doi: 10.7498/aps.55.3546
    [20] Wang Qing-Xue. Study on models of strain and stress distribution in heterostructures. Acta Physica Sinica, doi: 10.7498/aps.54.3757
Metrics
  • Abstract views:  570
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Received Date:  10 February 2025
  • Accepted Date:  26 June 2025
  • Available Online:  01 July 2025
  • /

    返回文章
    返回