Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation analyses of 100-keV as well as low and high energy protons through insulating nanocapillary

Zhu Bing-Hui Yang Ai-Xiang Niu Shu-Tong Chen Xi-Meng Zhou Wang Shao Jian-Xiong

Citation:

Simulation analyses of 100-keV as well as low and high energy protons through insulating nanocapillary

Zhu Bing-Hui, Yang Ai-Xiang, Niu Shu-Tong, Chen Xi-Meng, Zhou Wang Shao, Jian-Xiong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In order to clearly understand the physical images of incident ions passing through the insulating nanocapillary, in this work we establish a theoretical model, in which the matlab program is combined with the Monte Carlo method, to estimate the time evolution of transmission features, such as the angular and deposited charge distribution, three-dimensional (3D) trajectories of H+ particles with proton incident energies of 10 keV, 100 keV and 1 MeV at -1 title angle. The simulation results show that the transmission mechanism of 100 keV protons is different from those of 10 keV and 1 MeV protons. After a sufficiently charging and discharging stage, 10 keV H+ particles are guided along the direction of capillary axis, indicating that the guiding force from the surface charge patches is significant, and the small-angle scattering of 1 MeV protons under the capillary inner wall is a physical process that determines the transport of H+ particles through the nanocapillary. However, for 100 keV H+ particles, the centroid angle gradually shifts from the guiding direction to the direction close to the incident beam, which is attributed to the fact that the stochastic inelastic binary collision below the surface is the main transmission mechanism at the beginning. After the charging and discharging reach an equilibrium state, the H+ particles are likely to pass through the nanocapillary, and the main transmission mechanism is the charge-patch-assisted specular scattering. This mechanism deepens the understanding of the transport behavior of protons through the nanocapillary, which will contribute to the control and application of the 100 keV proton beam.
      Corresponding author: Zhou Wang Shao, w.zhou@outlook.com;shaojx@lzu.edu.cn ; Jian-Xiong, w.zhou@outlook.com;shaojx@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11775103, 11675067) and the National Natural Science Foundation for Young Scholars of China (Grant No. 11605078).
    [1]

    El-Said A S, Heller R, Meissl W, Ritter R, Facsko S, Lemell C, Solleder B, Gebeshuber I C, Betz G, Toulemonde M, Mller W, Burgdrfer J, Aumayr F 2008 Phys. Rev. Lett. 100 237601

    [2]

    Mo D, Liu J, Duan J L, Yao H J, Chen Y H, Sun Y M, Zhai P F 2012 Mater. Lett. 68 201

    [3]

    Kottmann J P, Martin O J F, Smith D R, Schultz S 2001 Phys. Rev.. 64 235402

    [4]

    Mtfi-Tempfli S, Mtfi-Tempfli M, Piraux L, Juhsz Z, Biri S, Fekete , Ivn I, Gll F, Sulik B, Vkor G, Plinks J, Stolterfoht N 2006 Nanotechnology 17 3915

    [5]

    Rajendra-Kumar R T, Badel X, Vikor G, Linnros J, Schuch R 2005 Nanotechnology 16 1697

    [6]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [7]

    Juhsz Z, Sulik B, Rcz R, Biri S, Bereczky J R, Tksi K, Kvr , Plinks J, Stolterfoht N 2010 Phys. Rev.. 82 062903

    [8]

    Stolterfoht N 2013 Phys. Rev.. 87 032901

    [9]

    Schiessl K, Palfinger W, Lemell C, Burgdrfer J 2005 Nucl. Instrum. Methods Phys. Res.. 232 228

    [10]

    Schiessl K, Palfinger W, Tksi K, Nowotny H, Lemell C, Burgdrfer J 2005 Phys. Rev.. 72 062902

    [11]

    Schiessl K, Palfinger W, Tksi K, Nowotny H, Lemell C, Burgdrfer J 2007 Nucl. Instrum. Methods Phys. Res.. 258 150

    [12]

    Lemell C, Schiessl K, Nowotny H, Burgdrfer J 2007 Nucl. Instrum. Methods Phys. Res.. 256 66

    [13]

    Schiessl K, Lemell C, Tksi K, Burgdrfer J 2009 J. Phys. Conf. Ser. 163 012081

    [14]

    Schiessl K, Lemell C, Tksi K, Burgdrfer J 2009 J. Phys. Conf. Ser. 194 012069

    [15]

    Schweigler T, Lemell C, Burgdrfer J 2011 Nucl. Instrum. Methods Phys. Res.. 269 1253

    [16]

    Nebiki T, Yamamot T, Narusawa T, Breese M B H, Teo E J, Watt F, Vac J 2003 Sci. Tech. A: Vacuum, Surfaces, and Films 21 1671

    [17]

    Nebiki T, Sekiba D, Yonemura H, Wilde M, Ogura S, Yamashita H, Matsumoto M, Fukutani K, Okano T, Kasagi J, Iwamura Y, Itoh T, Kuribayashi S, Matsuzaki H, Narusawa T 2008 Nucl. Instrum. Methods Phys. Res.. 266 1324

    [18]

    Sekiba D, Yonemura H, Nebiki T, Wilde M, Ogura S, Yamashita H, Matsumoto M, Kasagi J, Iwamura Y, Itoh T, Matsuzaki H, Narusawa T, Fukutani K 2008 Nucl. Instrum. Methods Phys. Res.. 266 4027

    [19]

    Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913

    [20]

    Simon M J, Zhou C L, Dbeli M, Cassimi A, Monnet I, Mry A, Grygiel C, Guillous S, Madi T, Benyagoub A, Lebius H, Mller A M, Shiromaru H, Synal H A 2014 Nucl. Instrum. Methods Phys. Res.. 330 11

    [21]

    Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913

    [22]

    Wu Y H, Yu D Y, Xue Y L, Chen J, Liu J L, Zhang M W, Wang W, Lu R C, Ruan F F, Du F, Shao C J, Li J Y, Kang L, Cai X H 2014 Nucl. Instrum. Methods Phys. Res.. 334 59

    [23]

    Xue Y L, Yu D Y, Liu J L, Wu Y H, Zhang M W, Chen J, Wang W, Lu R C, Shao C J, Kang L, Li J Y, Cai X H, Stolterfoht N 2015 Nucl. Instrum. Methods Phys. Res.. 359 44

    [24]

    Wang G Y, Shao J X, Song Q, Mo D, Yang A X, Ma X, Zhou W, Cui Y, Li Y, Liu Z L, Chen X M 2015 Sci. Rep. 5 15169

    [25]

    Zhou W, Niu S T, Yan X W, Bai X F, Han C Z, Zhang M X, Zhou L H, Yang A X, Pan P, Shao J X, Chen X M 2016 Acta Phys. Sin. 65 103401(in Chinese) [周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌 2016 物理学报 65 103401]

    [26]

    Errea L F, Illescas C, Mndez L, Pons B, Rabadn I, Riera A 2007 Phys. Rev.. 76 040701

    [27]

    Illescas C, Riera A 1999 Phys. Rev.. 60 4546

    [28]

    Lilly Jr A C, McDowell J R 1968 J. Appl. Phys. 39 141

    [29]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [30]

    Stolterfoht N, Hellhammer R, Sulik B, Juhsz Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev.. 83 062901

    [31]

    Yang F J 2008 Atom. Phys. (Beijing: Higher Education Press) p95 (in Chinese) [杨福家 2008 原子物理学(北京: 高等教育出版社) 第95页]

  • [1]

    El-Said A S, Heller R, Meissl W, Ritter R, Facsko S, Lemell C, Solleder B, Gebeshuber I C, Betz G, Toulemonde M, Mller W, Burgdrfer J, Aumayr F 2008 Phys. Rev. Lett. 100 237601

    [2]

    Mo D, Liu J, Duan J L, Yao H J, Chen Y H, Sun Y M, Zhai P F 2012 Mater. Lett. 68 201

    [3]

    Kottmann J P, Martin O J F, Smith D R, Schultz S 2001 Phys. Rev.. 64 235402

    [4]

    Mtfi-Tempfli S, Mtfi-Tempfli M, Piraux L, Juhsz Z, Biri S, Fekete , Ivn I, Gll F, Sulik B, Vkor G, Plinks J, Stolterfoht N 2006 Nanotechnology 17 3915

    [5]

    Rajendra-Kumar R T, Badel X, Vikor G, Linnros J, Schuch R 2005 Nanotechnology 16 1697

    [6]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [7]

    Juhsz Z, Sulik B, Rcz R, Biri S, Bereczky J R, Tksi K, Kvr , Plinks J, Stolterfoht N 2010 Phys. Rev.. 82 062903

    [8]

    Stolterfoht N 2013 Phys. Rev.. 87 032901

    [9]

    Schiessl K, Palfinger W, Lemell C, Burgdrfer J 2005 Nucl. Instrum. Methods Phys. Res.. 232 228

    [10]

    Schiessl K, Palfinger W, Tksi K, Nowotny H, Lemell C, Burgdrfer J 2005 Phys. Rev.. 72 062902

    [11]

    Schiessl K, Palfinger W, Tksi K, Nowotny H, Lemell C, Burgdrfer J 2007 Nucl. Instrum. Methods Phys. Res.. 258 150

    [12]

    Lemell C, Schiessl K, Nowotny H, Burgdrfer J 2007 Nucl. Instrum. Methods Phys. Res.. 256 66

    [13]

    Schiessl K, Lemell C, Tksi K, Burgdrfer J 2009 J. Phys. Conf. Ser. 163 012081

    [14]

    Schiessl K, Lemell C, Tksi K, Burgdrfer J 2009 J. Phys. Conf. Ser. 194 012069

    [15]

    Schweigler T, Lemell C, Burgdrfer J 2011 Nucl. Instrum. Methods Phys. Res.. 269 1253

    [16]

    Nebiki T, Yamamot T, Narusawa T, Breese M B H, Teo E J, Watt F, Vac J 2003 Sci. Tech. A: Vacuum, Surfaces, and Films 21 1671

    [17]

    Nebiki T, Sekiba D, Yonemura H, Wilde M, Ogura S, Yamashita H, Matsumoto M, Fukutani K, Okano T, Kasagi J, Iwamura Y, Itoh T, Kuribayashi S, Matsuzaki H, Narusawa T 2008 Nucl. Instrum. Methods Phys. Res.. 266 1324

    [18]

    Sekiba D, Yonemura H, Nebiki T, Wilde M, Ogura S, Yamashita H, Matsumoto M, Kasagi J, Iwamura Y, Itoh T, Matsuzaki H, Narusawa T, Fukutani K 2008 Nucl. Instrum. Methods Phys. Res.. 266 4027

    [19]

    Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913

    [20]

    Simon M J, Zhou C L, Dbeli M, Cassimi A, Monnet I, Mry A, Grygiel C, Guillous S, Madi T, Benyagoub A, Lebius H, Mller A M, Shiromaru H, Synal H A 2014 Nucl. Instrum. Methods Phys. Res.. 330 11

    [21]

    Hasegawa J, Jaiyen S, Polee C, Chankow N, Oguri Y 2011 J. Appl. Phys. 110 044913

    [22]

    Wu Y H, Yu D Y, Xue Y L, Chen J, Liu J L, Zhang M W, Wang W, Lu R C, Ruan F F, Du F, Shao C J, Li J Y, Kang L, Cai X H 2014 Nucl. Instrum. Methods Phys. Res.. 334 59

    [23]

    Xue Y L, Yu D Y, Liu J L, Wu Y H, Zhang M W, Chen J, Wang W, Lu R C, Shao C J, Kang L, Li J Y, Cai X H, Stolterfoht N 2015 Nucl. Instrum. Methods Phys. Res.. 359 44

    [24]

    Wang G Y, Shao J X, Song Q, Mo D, Yang A X, Ma X, Zhou W, Cui Y, Li Y, Liu Z L, Chen X M 2015 Sci. Rep. 5 15169

    [25]

    Zhou W, Niu S T, Yan X W, Bai X F, Han C Z, Zhang M X, Zhou L H, Yang A X, Pan P, Shao J X, Chen X M 2016 Acta Phys. Sin. 65 103401(in Chinese) [周旺, 牛书通, 闫学文, 白雄飞, 韩承志, 张鹛枭, 周利华, 杨爱香, 潘鹏, 邵剑雄, 陈熙萌 2016 物理学报 65 103401]

    [26]

    Errea L F, Illescas C, Mndez L, Pons B, Rabadn I, Riera A 2007 Phys. Rev.. 76 040701

    [27]

    Illescas C, Riera A 1999 Phys. Rev.. 60 4546

    [28]

    Lilly Jr A C, McDowell J R 1968 J. Appl. Phys. 39 141

    [29]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201

    [30]

    Stolterfoht N, Hellhammer R, Sulik B, Juhsz Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev.. 83 062901

    [31]

    Yang F J 2008 Atom. Phys. (Beijing: Higher Education Press) p95 (in Chinese) [杨福家 2008 原子物理学(北京: 高等教育出版社) 第95页]

  • [1] Yang Wei-Tao, Wu Yi-Chen, Xu Rui-Ming, Shi Guang, Ning Ti, Wang Bin, Liu Huan, Guo Zhong-Jie, Yu Song-Lin, Wu Long-Sheng. Geant4 simulation of Hg1–xCdxTe infrared focal plane array image sensor space proton displacement damage and total ionizing dose effects. Acta Physica Sinica, 2024, 73(23): 232402. doi: 10.7498/aps.73.20241246
    [2] He Huan, Bai Yu-Rong, Tian Shang, Liu Fang, Zang Hang, Liu Wen-Bo, Li Pei, He Chao-Hui. Simulation of displacement damage induced by protons incident on AlxGa1–xN materials. Acta Physica Sinica, 2024, 73(5): 052402. doi: 10.7498/aps.73.20231671
    [3] Xiao You-Peng, Wang Huai-Ping, Feng Lin. Numerical simulation of germanium selenide heterojunction solar cell. Acta Physica Sinica, 2023, 72(24): 248801. doi: 10.7498/aps.72.20231220
    [4] Song Yan, Jiang Hong-Xiang, Zhao Jiu-Zhou, He Jie, Zhang Li-Li, Li Shi-Xin. Numerical simulations of solidification microstructure evolution process for commercial-purity aluminum alloys inoculated by Al-Ti-B refiner. Acta Physica Sinica, 2021, 70(8): 086402. doi: 10.7498/aps.70.20201431
    [5] Yan Da-Wei, Tian Kui-Kui, Yan Xiao-Hong, Li Wei-Ran, Yu Dao-Xin, Li Jin-Xiao, Cao Yan-Rong, Gu Xiao-Feng. Forward current transport and noise behavior of GaN Schottky diodes. Acta Physica Sinica, 2021, 70(8): 087201. doi: 10.7498/aps.70.20201467
    [6] Luo Yin-Hong, Zhang Feng-Qi, Guo Hong-Xia, Wojtek Hajdas. Prediction of proton single event upset sensitivity based on heavy ion test data in nanometer hardened static random access memory. Acta Physica Sinica, 2020, 69(1): 018501. doi: 10.7498/aps.69.20190878
    [7] Li Ping, Xu Yu-Tang. Monte Carlo simulation of time-dependent dielectric breakdown of oxide caused by migration of oxygen vacancies. Acta Physica Sinica, 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [8] Han Yan-Long, Jia Fu-Guo, Zeng Yong, Wang Ai-Fang. Granular axial flow characteristics in a grinding area studied by discrete element method. Acta Physica Sinica, 2015, 64(23): 234502. doi: 10.7498/aps.64.234502
    [9] Zhao Wen, Guo Xiao-Qiang, Chen Wei, Qiu Meng-Tong, Luo Yin-Hong, Wang Zhong-Ming, Guo Hong-Xia. Effects of nuclear reactions between protons and metal interconnect overlayers on single event effects of micro/nano scaled static random access memory. Acta Physica Sinica, 2015, 64(17): 178501. doi: 10.7498/aps.64.178501
    [10] Luo Yin-Hong, Zhang Feng-Qi, Guo Hong-Xia, Guo Xiao-Qiang, Zhao Wen, Ding Li-Li, Wang Yuan-Ming. Angular dependence of proton single event multiple-cell upsets in nanometer SRAM. Acta Physica Sinica, 2015, 64(21): 216103. doi: 10.7498/aps.64.216103
    [11] Zhu Jin-Hui, Wei Yuan, Xie Hong-Gang, Niu Sheng-Li, Huang Liu-Xing. Numerical investigation of non-ionizing energy loss of proton at an energy range of 300 eV to 1 GeV in silicon. Acta Physica Sinica, 2014, 63(6): 066102. doi: 10.7498/aps.63.066102
    [12] Li Ming-Jie, Gao Hong, Li Jiang-Lu, Wen Jing, Li Kai, Zhang Wei-Guang. Electrical properties of single ZnO nanobelt in low temperature. Acta Physica Sinica, 2013, 62(18): 187302. doi: 10.7498/aps.62.187302
    [13] Zhang Ming-Lan, Yang Rui-Xia, Li Zhuo-Xin, Cao Xing-Zhong, Wang Bao-Yi, Wang Xiao-Hui. Study on proton irradiation induced defects in GaN thick film. Acta Physica Sinica, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [14] Liu Yao-Min, Liu Zhong-Liang, Huang Ling-Yan. Simulation of frost formation process on cold plate based on fractal theory combined with phase change dynamics. Acta Physica Sinica, 2010, 59(11): 7991-7997. doi: 10.7498/aps.59.7991
    [15] Wang Zu-Jun, Tang Ben-Qi, Xiao Zhi-Gang, Liu Min-Bo, Huang Shao-Yan, Zhang Yong. Experimental analysis of charge transfer efficiency degradation of charge coupled devices induced by proton irradiation. Acta Physica Sinica, 2010, 59(6): 4136-4142. doi: 10.7498/aps.59.4136
    [16] Feng Wei, Gao Zhong-Kuo. Simulation of physical properties of organic photovoltaic cell. Acta Physica Sinica, 2008, 57(4): 2567-2573. doi: 10.7498/aps.57.2567
    [17] Lai Guo-Jun, Liu Pu-Kun. Simulation and design of a W-band gyrotron traveling wave amplifier. Acta Physica Sinica, 2006, 55(1): 321-325. doi: 10.7498/aps.55.321
    [18] Lu Yang, Wang Fan, Zhu Chang-Sheng, Wang Zhi-Ping. Simulation of multiple grains for isothermal solidification of binary alloy using phase-field model. Acta Physica Sinica, 2006, 55(2): 780-785. doi: 10.7498/aps.55.780
    [19] He Bao-Ping, Chen Wei, Wang Gui-Zhen. A comparison of ionizing radiation damage in CMOS devices from 60Co Gamma rays, electrons and protons. Acta Physica Sinica, 2006, 55(7): 3546-3551. doi: 10.7498/aps.55.3546
    [20] Wang Pei-Lin, Ding Tian-Hua, Cai Xun. . Acta Physica Sinica, 2002, 51(9): 2109-2112. doi: 10.7498/aps.51.2109
Metrics
  • Abstract views:  6724
  • PDF Downloads:  113
  • Cited By: 0
Publishing process
  • Received Date:  24 July 2017
  • Accepted Date:  08 October 2017
  • Published Online:  05 January 2018

/

返回文章
返回