Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of displacement damage of InP induced by protons and α-particles in low Earth orbit

Bai Yu-Rong Li Pei He Huan Liu Fang Li Wei He Chao-Hui

Citation:

Simulation of displacement damage of InP induced by protons and α-particles in low Earth orbit

Bai Yu-Rong, Li Pei, He Huan, Liu Fang, Li Wei, He Chao-Hui
PDF
HTML
Get Citation
  • Indium phosphide (InP) material hasmany advantages, such as large band gap, high electron mobility, high photoelectric conversion efficiency, high temperature resistance, and radiation resistance, which is superior to silicon (Si) and gallium arsenide (GaAs). Meanwhile InP is widely used in optical communication, high-frequency millimeter waves, optoelectronic integrated circuits, satellite communication, space solar cells, and other fields. Radiation particles incident on InP device can generate displacement atoms inside the device through elastic processes. And these displacement atoms continue cascade collisions to generate lattice defects which are vacancies, interstitials, and clusters. These defects capture electrons-holes by defective energy levels in the energy band, and then resulting in a decrease in the life of minority carriers which is the reason of degradation of InP devices. The process of degradation of InP device, induced by lattice defects from ion-irradiation, is called displacement damage effect (DDE). The non-ionizing loss energy (NIEL) scaling is a useful method to predict the degradation of device caused by DDE of radiation particles. Many studies have shown that the NIEL is linearly related to the damage coefficient of InP device. Previous studies of radiation damage effect of InP device mainly focused on single-energy protons, electrons, and neutrons. Of the particles in low earth orbit (LEO),the vast majority of particles are protons, with a few being α particles and electrons, while the electron’s NIEL is too small and its DDE is negligible. The InP’s NIEL induced by proton and α energy in LEO has not been studied in detail. Therefore, this paper uses Monte Carlo software Geant4 to study the NIEL, damage energy distribution with depth, and annual total non-ionization loss energy generated by protons and α particles in LEO in 500/1000/5000 μm InP materials. The shielding of 150-μm-thick SiO2 layer and 2.54-mm-thick Al layer from protons and α particles are used as InP solar cell and InP devices in spacecraft, respectively. It is found that the energy spectrum determines the non-ionizing damage energy $ {T}_{\text{dam}} $ distribution, and then influences the NIEL value: the NIEL value increases with $ {T}_{\text{dam}} $ increasing and thickness of InP material decreasing. And α NIEL is larger than proton’s, the single particle DDE of InP device, induced by α particles, should be concerned. The annual non-ionizing damage energy of proton accounts for 98%, which means that proton is the main factor degrading InP devices in LEO.
      Corresponding author: Li Pei, lipei0916@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11975179).
    [1]

    Sun S X, Ji H F, Yao H J, Li S, Jin Z, Ding P, Zhong Y H 2016 Chin. Phys. B 25 4Google Scholar

    [2]

    Shatalov A, Subramanian S, Klein A 2001 IEEE Trans. Nucl. Sci. 48 2262Google Scholar

    [3]

    Yamaguchi M, Takamoto T, Taylor S J, Walters R J, Summers G P, Flood D J, Ohmori M 1997 J. Appl. Phys. 81 6013Google Scholar

    [4]

    Srour J R, Palko J W 2013 IEEE Trans. Nucl. Sci. 60 1740Google Scholar

    [5]

    Jay A, Hemeryck A, Richard N, Martin-Samos L, Raine M, Le Roch A, Mousseau N, Goiffon V, Paillet P, Gaillardin M, Magnan P 2018 IEEE Trans. Nucl. Sci. 65 724Google Scholar

    [6]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R E, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L, Simeone D 2018 J. Nucl. Mater. 512 450Google Scholar

    [7]

    Summers G P, Burke E A, Shapiro P, Messenger S R, Walters R J 1993 IEEE Trans. Nucl. Sci. 40 1372Google Scholar

    [8]

    Messenger S R, Burke E A, Summers G P, Xapsos M A, Walters R J, Jackson E M, Weaver B D 1999 IEEE Trans. Nucl. Sci. 46 1595Google Scholar

    [9]

    Srour J R, Marshall C J, Marshall P W 2003 IEEE Trans. Nucl. Sci. 50 653Google Scholar

    [10]

    Li C H, Lu H L, Zhang Y M, Liu M, Zhao X H 2015 IEEE Trans. Nucl. Sci. 62 1336Google Scholar

    [11]

    白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会 2021 物理学报 70 172401Google Scholar

    Bai Y R, Li Y H, Liu F, Liao W L, He H, Yang W T, He C H 2021 Acta Phys. Sin. 70 172401Google Scholar

    [12]

    李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏 2022 物理学报 71 082401Google Scholar

    Li W, Bai Y R, Guo H X, He C H, Li Y H 2022 Acta Phys. Sin. 71 082401Google Scholar

    [13]

    Akkerman A, Barak J 2006 IEEE Trans. Nucl. Sci. 53 3667Google Scholar

    [14]

    Akkerman A, Barak J 2007 Nucl. Instrum. Meth. B 260 529Google Scholar

    [15]

    Insoo J, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summers G P, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1924Google Scholar

    [16]

    Agostinelli S, Allison J, Amako K, et al. 2003 Nucl. Instrum. Meth. A 506 250Google Scholar

    [17]

    Liu L, Mei B, Zheng Z S, Wang L, Bai Y R, Yu Q K, Li P, Zhao H D, Sun Y C, Li B 2023 IEEE Trans. Nucl. Sci. 70 1885Google Scholar

    [18]

    Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 192401Google Scholar

    [19]

    Messenger S R, Burke E A, Xapsos M A, Summers G P, Walters R J, Insoo Jun, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1919Google Scholar

    [20]

    Dietrich W F, Shea M A, Smart D F 1997 IEEE T. Nucl. Sci. 44 2150Google Scholar

  • 图 1  1—300 MeV质子和α粒子在InP中的NIEL值 (a)质子[15]; (b) α粒子[19]

    Figure 1.  NIEL of 1—300 MeV protons and α in InP materials: (a) Proton [15]; (b) α[19].

    图 2  InP太阳能电池工况模拟设置图 (a)近地轨道内质子和α粒子能谱; (b) InP太阳能电池模拟结构图, 即500 μm×500 μm区域源离子入射500/1000/5000 μm InP材料(深蓝色)经过150 μm SiO2(浅蓝色)后的示意图

    Figure 2.  The simulation settings of InP solar cell: (a) Proton and α energy spectrum in low Earth orbit; (b) simulation structure diagram of InP solar cells, the schematic of 500 μm×500 μm area source ion-incident 500/1000/5000 μm InP materials (deep blue) after 150 μm SiO2 (light blue)

    图 3  航天器内部InP电子器件工况模拟设置图 (a)近地轨道内经过2.54 mm铝层屏蔽的质子和α粒子能谱; (b) InP材料模拟结构图, 即500 μm×500 μm区域源离子入射500/1000/5000 μm InP材料

    Figure 3.  The simulation settings of InP electronics in spacecraft: (a) Proton and α energy spectrum after the shielding of 2.54 mm Al in low Earth orbit; (b) simulation structure diagram of InP solar cells, the schematic of 500 μm×500 μm area source ion-incident 500/1000/5000 μm InP materials.

    图 4  近地轨道内质子和α粒子经过150 μm SiO2屏蔽后入射5000 μm InP中产生的$ {T}_{\text{dam}} $随深度分布, 数值的阴影是通过10次模拟计算得出的标准偏差

    Figure 4.  The distribution of $ {T}_{\text{dam}} $with depth of 5000 μm InP materials induced by proton and α in low Earth orbit after the shielding of 150 μm SiO2. The shadow of values is standard deviation which is calculated by ten simulations.

    图 5  近地轨道内质子和α粒子经过2.54 mm铝层后在5000 μm InP中产生的$ {T}_{\text{dam}} $随深度分布, 数值的阴影是通过10次模拟计算得出的标准偏差

    Figure 5.  The distribution of $ {T}_{\text{dam}} $ with depth of 5000 μm InP materials induced by proton and α in low Earth orbit after the shielding of 2.54 mm Al. The shadow of values is standard deviation which is calculated by ten simulations.

    表 1  近地轨道质子及α粒子经过150 μm SiO2后在InP产生的NIEL统计表

    Table 1.  NIEL of InP induced by proton and α in low Earth orbit after the shielding of 150 μm SiO2.

    粒子种类厚度/μmNIEL/(MeV·cm2·g–1)离散系数
    质子5000.002190.01023
    10000.001590.01381
    50000.000750.01017
    α5000.007050.02649
    10000.006970.01609
    50000.006910.00797
    DownLoad: CSV

    表 2  近地轨道质子及α粒子经过2.54 mm 铝层后在InP产生的NIEL统计表

    Table 2.  NIEL of InP induced by proton and α in low Earth orbit after the shielding of 2.54 mm Al.

    粒子种类厚度/μmNIEL/(MeV·cm2·g–1)离散系数
    质子5000.004030.00511
    10000.003870.00554
    50000.003000.00840
    α5000.007040.01135
    10000.007020.00505
    50000.006890.00290
    DownLoad: CSV

    表 3  不同屏蔽材料下近地轨道的质子和α粒子在500 μm InP中产生的年总非电离损伤能汇总

    Table 3.  Annual non-ionizing damage energy and percent of proton and α in low Earth orbit after the shielding of 150 μm SiO2 and 2.54 mm Al in 500 μm InP materials

    屏蔽材料入射粒子粒子数目总非电离损伤能/MeV占比/%
    150 μm SiO2质子5339588626452.0498.73
    α222307339.851.27
    2.54 mm 铝质子9445894586520.4899.58
    α219853365.770.42
    DownLoad: CSV
  • [1]

    Sun S X, Ji H F, Yao H J, Li S, Jin Z, Ding P, Zhong Y H 2016 Chin. Phys. B 25 4Google Scholar

    [2]

    Shatalov A, Subramanian S, Klein A 2001 IEEE Trans. Nucl. Sci. 48 2262Google Scholar

    [3]

    Yamaguchi M, Takamoto T, Taylor S J, Walters R J, Summers G P, Flood D J, Ohmori M 1997 J. Appl. Phys. 81 6013Google Scholar

    [4]

    Srour J R, Palko J W 2013 IEEE Trans. Nucl. Sci. 60 1740Google Scholar

    [5]

    Jay A, Hemeryck A, Richard N, Martin-Samos L, Raine M, Le Roch A, Mousseau N, Goiffon V, Paillet P, Gaillardin M, Magnan P 2018 IEEE Trans. Nucl. Sci. 65 724Google Scholar

    [6]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R E, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L, Simeone D 2018 J. Nucl. Mater. 512 450Google Scholar

    [7]

    Summers G P, Burke E A, Shapiro P, Messenger S R, Walters R J 1993 IEEE Trans. Nucl. Sci. 40 1372Google Scholar

    [8]

    Messenger S R, Burke E A, Summers G P, Xapsos M A, Walters R J, Jackson E M, Weaver B D 1999 IEEE Trans. Nucl. Sci. 46 1595Google Scholar

    [9]

    Srour J R, Marshall C J, Marshall P W 2003 IEEE Trans. Nucl. Sci. 50 653Google Scholar

    [10]

    Li C H, Lu H L, Zhang Y M, Liu M, Zhao X H 2015 IEEE Trans. Nucl. Sci. 62 1336Google Scholar

    [11]

    白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会 2021 物理学报 70 172401Google Scholar

    Bai Y R, Li Y H, Liu F, Liao W L, He H, Yang W T, He C H 2021 Acta Phys. Sin. 70 172401Google Scholar

    [12]

    李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏 2022 物理学报 71 082401Google Scholar

    Li W, Bai Y R, Guo H X, He C H, Li Y H 2022 Acta Phys. Sin. 71 082401Google Scholar

    [13]

    Akkerman A, Barak J 2006 IEEE Trans. Nucl. Sci. 53 3667Google Scholar

    [14]

    Akkerman A, Barak J 2007 Nucl. Instrum. Meth. B 260 529Google Scholar

    [15]

    Insoo J, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summers G P, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1924Google Scholar

    [16]

    Agostinelli S, Allison J, Amako K, et al. 2003 Nucl. Instrum. Meth. A 506 250Google Scholar

    [17]

    Liu L, Mei B, Zheng Z S, Wang L, Bai Y R, Yu Q K, Li P, Zhao H D, Sun Y C, Li B 2023 IEEE Trans. Nucl. Sci. 70 1885Google Scholar

    [18]

    Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 192401Google Scholar

    [19]

    Messenger S R, Burke E A, Xapsos M A, Summers G P, Walters R J, Insoo Jun, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1919Google Scholar

    [20]

    Dietrich W F, Shea M A, Smart D F 1997 IEEE T. Nucl. Sci. 44 2150Google Scholar

  • [1] Yan Li-Bin, Bai Yu-Rong, Li Pei, Liu Wen-Bo, He Huan, He Chao-Hui, Zhao Xiao-Hong. First-principles calculations of point defect migration mechanisms in InP. Acta Physica Sinica, 2024, 73(18): 183101. doi: 10.7498/aps.73.20240754
    [2] He Huan, Bai Yu-Rong, Tian Shang, Liu Fang, Zang Hang, Liu Wen-Bo, Li Pei, He Chao-Hui. Simulation of displacement damage induced by protons incident on AlxGa1–xN materials. Acta Physica Sinica, 2024, 73(5): 052402. doi: 10.7498/aps.73.20231671
    [3] Yang Wei-Tao, Wu Yi-Chen, Xu Rui-Ming, Shi Guang, Ning Ti, Wang Bin, Liu Huan, Guo Zhong-Jie, Yu Song-Lin, Wu Long-Sheng. Geant4 simulation of Hg1–xCdxTe infrared focal plane array image sensor space proton displacement damage and total ionizing dose effects. Acta Physica Sinica, 2024, 73(23): 232402. doi: 10.7498/aps.73.20241246
    [4] Li Wei, Bai Yu-Rong, Guo Hao-Xuan, He Chao-Hui, Li Yong-Hong. Geant4 simulation of neutron displacement damage effect in InP. Acta Physica Sinica, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [5] Han Rui-Long, Cai Ming-Hui, Yang Tao, Xu Liang-Liang, Xia Qing, Han Jian-Wei. Mechanism of cosmic ray high-energy particles charging test mass. Acta Physica Sinica, 2021, 70(22): 229501. doi: 10.7498/aps.70.20210747
    [6] Bai Yu-Rong, Li Yong-Hong, Liu Fang, Liao Wen-Long, He Huan, Yang Wei-Tao, He Chao-Hui. Simulation of displacement damage in indium phosphide induced by space heavy ions. Acta Physica Sinica, 2021, 70(17): 172401. doi: 10.7498/aps.70.20210303
    [7] Hao Rui-Jing, Guo Hong-Xia, Pan Xiao-Yu, Lü Ling, Lei Zhi-Feng, Li Bo, Zhong Xiang-Li, Ouyang Xiao-Ping, Dong Shi-Jian. Neutron-induced displacement damage effect and mechanism of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [8] Xie Fei, Zang Hang, Liu Fang, He Huan, Liao Wen-Long, Huang Yu. Simulated research on displacement damage of gallium nitride radiated by different neutron sources. Acta Physica Sinica, 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [9] Shen Shuai-Shuai, He Chao-Hui, Li Yong-Hong. Non-ionization energy loss of proton in different regions in SiC. Acta Physica Sinica, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [10] Yao Zhi-Ming, Duan Bao-Jun, Song Gu-Zhou, Yan Wei-Peng, Ma Ji-Ming, Han Chang-Cai, Song Yan. A method of evaluating the relative light yield of ST401 irradiated by pulsed neutron. Acta Physica Sinica, 2017, 66(6): 062401. doi: 10.7498/aps.66.062401
    [11] Jia Qing-Gang, Zhang Tian-Kui, Xu Hai-Bo. Optimization design of a Gamma-to-electron spectrometer for high energy gammas induced by fusion. Acta Physica Sinica, 2017, 66(1): 010703. doi: 10.7498/aps.66.010703
    [12] Tang Du, He Chao-Hui, Zang Hang, Li Yong-Hong, Xiong Cen, Zhang Jin-Xin, Zhang Peng, Tan Peng-Kang. Multi-scale simulations of single particle displacement damage in silicon. Acta Physica Sinica, 2016, 65(8): 084209. doi: 10.7498/aps.65.084209
    [13] Wen Lin, Li Yu-Dong, Guo Qi, Ren Di-Yuan, Wang Bo, Maria. Analysis of ionizing and department damage mechanism in proton-irradiation-induced scientific charge-coupled device. Acta Physica Sinica, 2015, 64(2): 024220. doi: 10.7498/aps.64.024220
    [14] Che Chi, Liu Qing-Feng, Ma Jing, Zhou Yan-Ping. Displacement damage effects on the characteristics of quantum dot lasers. Acta Physica Sinica, 2013, 62(9): 094219. doi: 10.7498/aps.62.094219
    [15] Ma Jing, Che Chi, Han Qi-Qi, Zhou Yan-Ping, Tan Li-Ying. Displacement damage effect on the characteristics of quantum well laser. Acta Physica Sinica, 2012, 61(21): 214211. doi: 10.7498/aps.61.214211
    [16] Qin Xiao-Gang, He De-Yan, Wang Ji. Geant 4-based calculation of electric field in deep dielectric charging. Acta Physica Sinica, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [17] Zhao You-Wen, Miao Shan-Shan, Dong Zhi-Yuan, Lü Xiao-Hong, Deng Ai-Hong, Yang Jun, Wang Bo. Thermally induced Fe atom transition from substitutional to interstitial sites in InP and its influence on material property. Acta Physica Sinica, 2007, 56(9): 5536-5541. doi: 10.7498/aps.56.5536
    [18] Li Xiao, Zhang Hai-Ying, Yin Jun-Jian, Liu Liang, Xu Jing-Bo, Li Ming, Ye Tian-Chun, Gong Min. Research of breakdown characteristic of InP composite channel HEMT. Acta Physica Sinica, 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [19] Wang Bo, Zhao You-Wen, Dong Zhi-Yuan, Deng Ai-Hong, Miao Shan-Shan, Yang Jun. Electron irradiation induced defects in high temperature annealed InP single crystal. Acta Physica Sinica, 2007, 56(3): 1603-1607. doi: 10.7498/aps.56.1603
    [20] Li Xiao, Liu Liang, Zhang Hai-Ying, Yin Jun-Jian, Li Hai-Ou, Ye Tian-Chun, Gong Min. A new small signal physical model of InP-based composite channel high electron mobility transistor. Acta Physica Sinica, 2006, 55(7): 3617-3621. doi: 10.7498/aps.55.3617
Metrics
  • Abstract views:  1834
  • PDF Downloads:  67
  • Cited By: 0
Publishing process
  • Received Date:  15 September 2023
  • Accepted Date:  30 November 2023
  • Available Online:  08 December 2023
  • Published Online:  05 March 2024

/

返回文章
返回