Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Non-ionization energy loss of proton in different regions in SiC

Shen Shuai-Shuai He Chao-Hui Li Yong-Hong

Citation:

Non-ionization energy loss of proton in different regions in SiC

Shen Shuai-Shuai, He Chao-Hui, Li Yong-Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Silicon carbide (SiC), as a representative of the third-generation semiconductor materials, is widely used in some fields which may suffer strong radiation such as in the cases of military affairs, aerospace and reactor. SiC possesses the superior radiation-resistance characteristic. However, SiC under the proton irradiation generate a lot of defects, resulting in degradation of device performance and even complete loss of its function. Therefore, the study on the irradiation damage to SiC under proton irradiation possesses important significance. A large number of studies have shown that for most of electronic devices and different types of incident particles, the degradation of device performance caused by displacement damage is linearly dependent on non-ionizing energy loss (NIEL), so the displacement damage can be evaluated by NIEL. In this work, the Monte Carlo software Geant4 is used to simulate the relationship between NIEL and proton energy, and the variation of NIEL with the depth of the material and the contribution of different types of primary recoil atoms to the total NIEL are also studied. The NIEL simulation results show that the NIEL in SiC material is less than that in Si and Ga semiconductor material under the same proton irradiation, proving that the stability and the radiation-resistance of SiC are stronger. The simulation results of NIEL at different depths show that the most serious damage regions of the material under different energy protons are diverse. Under the irradiation of low energy proton, the most serious region of the displacement damage occurs at the end of the proton range. With the increase of proton energy, the worst damage region of material will gradually move from the end of the proton range to the surface of SiC material. According to the contribution of different types of primary recoil atoms to the total NIEL, when the energy of the incident proton is low, the displacement damage of the proton in the SiC is mainly caused by 28Si and 12C, and the damage caused by 28Si is obviously higher than that by 12C. As the energy of proton increases, the 28Si and 12C are still the main causes of Bragg peak of the NIEL at the end of the proton range, but the number of ions generated by nuclear reactions increases accordingly, and the displacement damage caused by these ions increases in the shallow area of SiC, leading the surface of the material to be the worst damaged region. The combination of the two factors caused the most serious damage region moves from the end of the proton range to the surface of the material with the increase of proton energy. The results of this study are useful for the application of SiC devices to irradiation environment.
      Corresponding author: He Chao-Hui, hechaohui@mail.xjtu.edu.cn
    [1]

    Liu X F, Chen Y 2015 Adv. Mater. Ind. 10 12 (in Chinese) [刘兴昉, 陈宇 2015 新材料产业 10 12]

    [2]

    Hao J Q, Gao W, Zhao L B, Cao J S, L X, Ruan J 2016 Adv. Mater. Ind. 11 6 (in Chinese) [郝建群, 高伟, 赵璐冰, 曹峻松, 吕欣, 阮军 2016 新材料产业 11 6]

    [3]

    Zhang H H, Zhang C H, Li B S, Zhou L H, Yang Y T, Fu Y C 2009 Acta Phys. Sin. 58 3302 (in Chinese) [张洪华, 张崇宏, 李炳生, 周丽宏, 杨义涛, 付云翀 2009 物理学报 58 3302]

    [4]

    Kimoto T 2015 Jpn J. Appl. Phys. 54 040103

    [5]

    Lebedev A A, Chelnokov V E 1999 Semiconductor 33 999

    [6]

    Zhang Y J, Yin Z P, Su Y, Wang D J 2018 Chin. Phys. B 27 047103

    [7]

    Li M, Zhou X, Yang H, Du S, Huang Q 2018 Scr. Mater. 143 149

    [8]

    Tang D, He C X, Zang H, Li Y H, Xiong C, Zhang J X, Zhang P, Tan P K 2016 Acta Phys. Sin. 65 084209 (in Chinese) [唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康 2016 物理学报 65 084209]

    [9]

    Chilingarov A, Meyer J S, Sloan T 1997 Nucl. Instrum. Meth. Phys. Res. 395 35

    [10]

    Lazanu S, Lazanu I, Biggeri U, Borchi E, Bruzzi M 1997 Nucl. Instrum. Meth. Phys. Res. 394 232

    [11]

    Wu Y Y, Yue L, Hu J M, Lan M J, Xiao J D, Yang D Z, He S Y, Zhang Z W, Wang X C, Qian Y, Chen M B 2011 Acta Phys. Sin. 60 098110 (in Chinese) [吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波 2011 物理学报 60 098110]

    [12]

    Zu J H, Wei Y, Xie H G, Niu S L, Huang L X 2014 Acta Phys. Sin. 63 066102 (in Chinese) [朱金辉, 韦源, 谢红刚, 牛胜利, 黄流兴 2014 物理学报 63 066102]

    [13]

    Tang X X, Luo W Y, Wang C Z, He X F, Zha Y Z, Fan S, Huang X L 2008 Acta Phys. Sin. 57 1266 (in Chinese) [唐欣欣, 罗文芸, 王朝壮, 贺新福, 查元梓, 樊胜, 黄小龙 2008 物理学报 57 1266]

    [14]

    Lu W, Wang T Q, Wang X G, Liu X L 2011 Nucl. Technol. 34 529 (in Chinese) [路伟, 王同权, 王兴功, 刘雪林 2011 核技术 34 529]

    [15]

    Guo D X, He C H, Zang H, Xi J Q, Ma L, Yang T, Zhang P 2013 Atom. Energ. Sci. Technol. 47 1222 (in Chinese) [郭达禧, 贺朝会, 臧航, 席建琦, 马梨, 杨涛, 张鹏 2013 原子能科学技术 47 1222]

    [16]

    Chen S B, Zhang Y M, Chen Y S, Huang L X, Zhang Y M 2001 High. Energ. Phys. Nucl. 25 365 (in Chinese) [陈世彬, 张义门, 陈雨生, 黄流兴, 张玉明 2001 高能物理与核物理 25 365]

    [17]

    Lindhard J, Nielsen V, Scharff M, Thomsen P V 1963 Mat. Fys. Medd. Dan. Vid. Selsk. 33 706

    [18]

    Robinson M T, Torrens I M 1974 Phys. Rev. B 9 5008

    [19]

    Akkerman A, Barak J 2007 Nucl. Instrum. Meth. Phys. Res. 260 529

    [20]

    Akkerman A, Barak J, Chadwick M B, Levinson J, Murat M, Lifshitz Y 2011 Radiat. Phys. Chem. 62 301

    [21]

    Dale C J, Chen L, Mcnulty P J, Marshall P W, Burke E A 1994 IEEE Trans. Nucl. Sci. 41 1974

    [22]

    Jun I, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summers G P, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1924

  • [1]

    Liu X F, Chen Y 2015 Adv. Mater. Ind. 10 12 (in Chinese) [刘兴昉, 陈宇 2015 新材料产业 10 12]

    [2]

    Hao J Q, Gao W, Zhao L B, Cao J S, L X, Ruan J 2016 Adv. Mater. Ind. 11 6 (in Chinese) [郝建群, 高伟, 赵璐冰, 曹峻松, 吕欣, 阮军 2016 新材料产业 11 6]

    [3]

    Zhang H H, Zhang C H, Li B S, Zhou L H, Yang Y T, Fu Y C 2009 Acta Phys. Sin. 58 3302 (in Chinese) [张洪华, 张崇宏, 李炳生, 周丽宏, 杨义涛, 付云翀 2009 物理学报 58 3302]

    [4]

    Kimoto T 2015 Jpn J. Appl. Phys. 54 040103

    [5]

    Lebedev A A, Chelnokov V E 1999 Semiconductor 33 999

    [6]

    Zhang Y J, Yin Z P, Su Y, Wang D J 2018 Chin. Phys. B 27 047103

    [7]

    Li M, Zhou X, Yang H, Du S, Huang Q 2018 Scr. Mater. 143 149

    [8]

    Tang D, He C X, Zang H, Li Y H, Xiong C, Zhang J X, Zhang P, Tan P K 2016 Acta Phys. Sin. 65 084209 (in Chinese) [唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康 2016 物理学报 65 084209]

    [9]

    Chilingarov A, Meyer J S, Sloan T 1997 Nucl. Instrum. Meth. Phys. Res. 395 35

    [10]

    Lazanu S, Lazanu I, Biggeri U, Borchi E, Bruzzi M 1997 Nucl. Instrum. Meth. Phys. Res. 394 232

    [11]

    Wu Y Y, Yue L, Hu J M, Lan M J, Xiao J D, Yang D Z, He S Y, Zhang Z W, Wang X C, Qian Y, Chen M B 2011 Acta Phys. Sin. 60 098110 (in Chinese) [吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波 2011 物理学报 60 098110]

    [12]

    Zu J H, Wei Y, Xie H G, Niu S L, Huang L X 2014 Acta Phys. Sin. 63 066102 (in Chinese) [朱金辉, 韦源, 谢红刚, 牛胜利, 黄流兴 2014 物理学报 63 066102]

    [13]

    Tang X X, Luo W Y, Wang C Z, He X F, Zha Y Z, Fan S, Huang X L 2008 Acta Phys. Sin. 57 1266 (in Chinese) [唐欣欣, 罗文芸, 王朝壮, 贺新福, 查元梓, 樊胜, 黄小龙 2008 物理学报 57 1266]

    [14]

    Lu W, Wang T Q, Wang X G, Liu X L 2011 Nucl. Technol. 34 529 (in Chinese) [路伟, 王同权, 王兴功, 刘雪林 2011 核技术 34 529]

    [15]

    Guo D X, He C H, Zang H, Xi J Q, Ma L, Yang T, Zhang P 2013 Atom. Energ. Sci. Technol. 47 1222 (in Chinese) [郭达禧, 贺朝会, 臧航, 席建琦, 马梨, 杨涛, 张鹏 2013 原子能科学技术 47 1222]

    [16]

    Chen S B, Zhang Y M, Chen Y S, Huang L X, Zhang Y M 2001 High. Energ. Phys. Nucl. 25 365 (in Chinese) [陈世彬, 张义门, 陈雨生, 黄流兴, 张玉明 2001 高能物理与核物理 25 365]

    [17]

    Lindhard J, Nielsen V, Scharff M, Thomsen P V 1963 Mat. Fys. Medd. Dan. Vid. Selsk. 33 706

    [18]

    Robinson M T, Torrens I M 1974 Phys. Rev. B 9 5008

    [19]

    Akkerman A, Barak J 2007 Nucl. Instrum. Meth. Phys. Res. 260 529

    [20]

    Akkerman A, Barak J, Chadwick M B, Levinson J, Murat M, Lifshitz Y 2011 Radiat. Phys. Chem. 62 301

    [21]

    Dale C J, Chen L, Mcnulty P J, Marshall P W, Burke E A 1994 IEEE Trans. Nucl. Sci. 41 1974

    [22]

    Jun I, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summers G P, Jordan T 2003 IEEE Trans. Nucl. Sci. 50 1924

  • [1] He Huan, Bai Yu-Rong, Tian Shang, Liu Fang, Zang Hang, Liu Wen-Bo, Li Pei, He Chao-Hui. Simulation of displacement damage induced by protons incident on AlxGa1–xN materials. Acta Physica Sinica, 2024, 73(5): 052402. doi: 10.7498/aps.73.20231671
    [2] Bai Yu-Rong, Li Pei, He Huan, Liu Fang, Li Wei, He Chao-Hui. Simulation of displacement damage of InP induced by protons and α-particles in low Earth orbit. Acta Physica Sinica, 2024, 73(5): 052401. doi: 10.7498/aps.73.20231499
    [3] Yang Wei-Tao, Wu Yi-Chen, Xu Rui-Ming, Shi Guang, Ning Ti, Wang Bin, Liu Huan, Guo Zhong-Jie, Yu Song-Lin, Wu Long-Sheng. Geant4 simulation of Hg1–xCdxTe infrared focal plane array image sensor space proton displacement damage and total ionizing dose effects. Acta Physica Sinica, 2024, 73(23): 232402. doi: 10.7498/aps.73.20241246
    [4] Li Wei, Bai Yu-Rong, Guo Hao-Xuan, He Chao-Hui, Li Yong-Hong. Geant4 simulation of neutron displacement damage effect in InP. Acta Physica Sinica, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [5] Zhang Hong, Guo Hong-Xia, Pan Xiao-Yu, Lei Zhi-Feng, Zhang Feng-Qi, Gu Zhao-Qiao, Liu Yi-Tian, Ju An-An, Ouyang Xiao-Ping. Transport process and energy loss of heavy ions in silicon carbide. Acta Physica Sinica, 2021, 70(16): 162401. doi: 10.7498/aps.70.20210503
    [6] Han Rui-Long, Cai Ming-Hui, Yang Tao, Xu Liang-Liang, Xia Qing, Han Jian-Wei. Mechanism of cosmic ray high-energy particles charging test mass. Acta Physica Sinica, 2021, 70(22): 229501. doi: 10.7498/aps.70.20210747
    [7] Bai Yu-Rong, Li Yong-Hong, Liu Fang, Liao Wen-Long, He Huan, Yang Wei-Tao, He Chao-Hui. Simulation of displacement damage in indium phosphide induced by space heavy ions. Acta Physica Sinica, 2021, 70(17): 172401. doi: 10.7498/aps.70.20210303
    [8] Lu Yuan-Yuan, Lu Gui-Hua, Zhou Heng-Wei, Huang Yi-Neng. Preparation and properties of spodumene/silicon carbide composite ceramic materials. Acta Physica Sinica, 2020, 69(11): 117701. doi: 10.7498/aps.69.20200232
    [9] Xie Fei, Zang Hang, Liu Fang, He Huan, Liao Wen-Long, Huang Yu. Simulated research on displacement damage of gallium nitride radiated by different neutron sources. Acta Physica Sinica, 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [10] Li Yuan-Yuan, Yu Yin, Meng Chuan-Min, Zhang Lu, Wang Tao, Li Yong-Qiang, He Hong-Liang, He Duan-Wei. Dynamic impact strength of diamond-SiC superhard composite. Acta Physica Sinica, 2019, 68(15): 158101. doi: 10.7498/aps.68.20190350
    [11] Yao Zhi-Ming, Duan Bao-Jun, Song Gu-Zhou, Yan Wei-Peng, Ma Ji-Ming, Han Chang-Cai, Song Yan. A method of evaluating the relative light yield of ST401 irradiated by pulsed neutron. Acta Physica Sinica, 2017, 66(6): 062401. doi: 10.7498/aps.66.062401
    [12] Jia Qing-Gang, Zhang Tian-Kui, Xu Hai-Bo. Optimization design of a Gamma-to-electron spectrometer for high energy gammas induced by fusion. Acta Physica Sinica, 2017, 66(1): 010703. doi: 10.7498/aps.66.010703
    [13] Tang Du, He Chao-Hui, Zang Hang, Li Yong-Hong, Xiong Cen, Zhang Jin-Xin, Zhang Peng, Tan Peng-Kang. Multi-scale simulations of single particle displacement damage in silicon. Acta Physica Sinica, 2016, 65(8): 084209. doi: 10.7498/aps.65.084209
    [14] Wen Lin, Li Yu-Dong, Guo Qi, Ren Di-Yuan, Wang Bo, Maria. Analysis of ionizing and department damage mechanism in proton-irradiation-induced scientific charge-coupled device. Acta Physica Sinica, 2015, 64(2): 024220. doi: 10.7498/aps.64.024220
    [15] Zhu Jin-Hui, Wei Yuan, Xie Hong-Gang, Niu Sheng-Li, Huang Liu-Xing. Numerical investigation of non-ionizing energy loss of proton at an energy range of 300 eV to 1 GeV in silicon. Acta Physica Sinica, 2014, 63(6): 066102. doi: 10.7498/aps.63.066102
    [16] Fang Chao, Liu Ma-Lin. The study of the Raman spectra of SiC layers in TRISO particles. Acta Physica Sinica, 2012, 61(9): 097802. doi: 10.7498/aps.61.097802
    [17] Zhou Nai-Gen, Hong Tao, Zhou Lang. A comparative study between MEAM and Tersoff potentials on the characteristics of melting and solidification of carborundum. Acta Physica Sinica, 2012, 61(2): 028101. doi: 10.7498/aps.61.028101
    [18] Qin Xiao-Gang, He De-Yan, Wang Ji. Geant 4-based calculation of electric field in deep dielectric charging. Acta Physica Sinica, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [19] Lin Tao, Chen Zhi-Ming, Li Jia, Li Lian-Bi, Li Qing-Min, Pu Hong-Bin. Study of the growth characteristics of SiCGe layers grown on 6H-SiC substrates. Acta Physica Sinica, 2008, 57(9): 6007-6012. doi: 10.7498/aps.57.6007
    [20] Tang Xin-Xin, Luo Wen-Yun, Wang Chao-Zhuang, He Xin-Fu, Zha Yuan-Zi, Fan Sheng, Huang Xiao-Long, Wang Chuan-Shan. Non-ionizing energy loss of low energy proton in semiconductor materials Si and GaAs. Acta Physica Sinica, 2008, 57(2): 1266-1270. doi: 10.7498/aps.57.1266
Metrics
  • Abstract views:  7603
  • PDF Downloads:  217
  • Cited By: 0
Publishing process
  • Received Date:  04 June 2018
  • Accepted Date:  14 June 2018
  • Published Online:  20 September 2019

/

返回文章
返回