Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanism of cosmic ray high-energy particles charging test mass

Han Rui-Long Cai Ming-Hui Yang Tao Xu Liang-Liang Xia Qing Han Jian-Wei

Citation:

Mechanism of cosmic ray high-energy particles charging test mass

Han Rui-Long, Cai Ming-Hui, Yang Tao, Xu Liang-Liang, Xia Qing, Han Jian-Wei
PDF
HTML
Get Citation
  • The testing mass is the core sensor for measuring the spatial gravitational waves. The high-energy cosmic ray particles penetrating the outer structure of the spacecraft result in the electrical charges on the testing mass. The Coulomb force produced by the charges on the surrounding conducting surface and the Lorentz force generated by the motion through the interplanetary magnetic field will exert a serious influence on the geodesic motion of the testing mass. In this paper are investigated the process and mechanism of charging the testing mass by high-energy particles from different cosmic rays through using the Monte Carlo simulation method. It is concluded that the charging rate gradually increases with the decrease of cut-off energy under the same energy spectrum. The positive charging rate (elementary charges per second) in the years of minimum solar activity is predicted to be 39.5 +e/s, and the protons account for approximately 83.16% of the total quantity of galactic cosmic rays. The positive charging rate of the testing mass during the years of maximum solar activity is about 12.5 +e/s, and the charging rate of the testing mass of the worst solar energetic particle event in 1989 is about 120700 +e/s. The charging rate of the components of the galactic cosmic ray depends on the deposition of primary particles of each component in the testing mass during the years of minimum solar activity, with primary particles accounting for 73% of the total charging rate. The charging contribution of protons in years of minimum solar activity is mainly in an energy range of 0.1–1 GeV, accounting for about 65%. The research results can be used to assess the charging patterns of test quality on-orbit charges and provide a basis for designing the charge management and on-orbit work.
      Corresponding author: Cai Ming-Hui, caiminghui@nssc.ac.cn
    • Funds: Project supported by National Key Research and Development Program (Grant No. 2020YFC2201300), the Major Software Development Special Project of the Science and Technology Bureau, China (Grant No. E01Z360101), and the Joint Fund for Independent Innovation of the Future Laboratory of the Second Academy of Aerospace Science and Industry, China(Grant No. YQQT202102645)
    [1]

    Sathyaprakash B S, Schutz B F 2009 Living Rev. Relativ. 12 1Google Scholar

    [2]

    雷中华, 兰明建, 汪先友, 李建杰 2008 物理学报 57 7408Google Scholar

    Lei Z H, Lan M J, Wang X Y, Li J J 2008 Acta Phys. Sin. 57 7408Google Scholar

    [3]

    Jafry Y, Sumner T J, Buchman S 1996 Classical Quantum Gravity 13 A97Google Scholar

    [4]

    Jafry Y, Sumner T J 1997 Classical Quantum Gravity 14 1567Google Scholar

    [5]

    Sumner T J, Jafry Y 2000 Adv. Space Res. 25 1219Google Scholar

    [6]

    Araújo H M, Howard A, Shaul D, Sumner T J 2003 Classical Quantum Gravity 20 S311Google Scholar

    [7]

    Shaul D N A, Sumner T J, Araújo H M, Rochester G K, Wass P J, Lee C G Y 2004 Classical Quantum Gravity 21 S647Google Scholar

    [8]

    Sumner T, Araújo H, Davidge D, Howard A, Lee C, Rochester G, Shaul D, Wass P 2004 Classical Quantum Gravity 21 S597Google Scholar

    [9]

    Vocca H, Grimani C, Amico P, Bosi L, Marchesoni F, Punturo M, Travasso F, Barone M, Stanga R, Vetrano F, Viceré A 2004 Classical Quantum Gravity 21 S665Google Scholar

    [10]

    包纲, 倪维斗, 柳磊, Araújo H, Shaul D, Sumner T 2004 紫金山天文台台刊 23 105

    Bao G, Ni W T, Liu L, Araújo H, Shaul D, Sumner T 2004 Publ. Purple Mt. Observatory 23 105

    [11]

    Bao G, Ni W T, Shaul D N A, Araújo H M, Liu L, Sumner T J 2008 Int. J. Mod. Phys. D 17 965Google Scholar

    [12]

    Grimani C, Fabi M, Lobo A, Mateos I, Telloni D 2015 Classical. Quantum Gravity. 32 035001Google Scholar

    [13]

    Wass P J, Araújo H M, Shaul D N A, Sumner T J 2005 Classical. Quantum Gravity. 22 S311Google Scholar

    [14]

    Armano M, Audley H, Auger G, Baird J T, Binetruy P, Born M, Bortoluzzi D, Brandt N, Bursi A, Caleno M, Cavalleri A, Cesarini A, Cruise M, Danzmann K, Silva M, Diepholz I, Dolesi R, Dunbar N, Ferraioli L, Ferroni V, Fitzsimons E D, Flatscher R, Freschi M, Gallegos J, Marirrodriga C, Gerndt R, Gesa L, Gibert F, Giardini D, Giusteri R, Grimani C, Grzymisch J, Harrison I, Heinzel G, Hewitson M, Hollington D, Hueller M, Huesler J, Inchauspé H, Jennrich O, Jetzer P, Johlander B, Karnesis N, Kaune B, Killow C J, Korsakova N, Lloro I, Liu L, López-Zaragoza J P, Maarschalkerweerd R, Madden S, Mance D, Martín V, Martin-Polo L, Martino J, Martin-Porqueras F, Mateos I, McNamara P W, Mendes J, Mendes L, Moroni A, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Prat P, Ragnit U, Ramos-Castro J, Reiche J, Perez J A, Robertson D I, Rozemeijer H, Rivas F, Russano G, Sarra P, Schleicher A, Slutsky J, Sopuerta C, Sumner T J, Texier D, Thorpe J I, Trenkel C, Vetrugno D, Vitale S, Wanner G, Ward H, Wass P J, Wealthy D, Weber W J, Wittchen A, Zanoni C, Ziegler T, Zweifel P 2017 Phys. Rev. Lett. 118 171101Google Scholar

    [15]

    Araújo H M, Wass P, Shaul D, Rochester G, Sumner T J 2005 Astropart. Phys. 22 451Google Scholar

    [16]

    罗子人, 白姗, 边星, 陈葛瑞, 董鹏, 董玉辉, 高伟, 龚雪飞, 贺建武, 李洪银, 李向前, 李玉琼, 刘河山, 邵明学, 宋同消, 孙保三, 唐文林, 徐鹏, 徐生年, 杨然, 靳刚 2013 力学进展 43 415Google Scholar

    Luo Z R, Bai S, Bian X, Chen G R, Dong P, Dong Y H, Gao W, Gong X F, He J W, Li H Y, Li X Q, Li Y Q, Liu S H, Shao M X, Song T X, Sun B S, Tang W L, Xu P, Xu S N, Yang R, Jin G 2013 Adv. Mech. 43 415Google Scholar

    [17]

    Myers Z D, Seo E S, Abe K, Anraku K, Imori M, Maeno T, Makida Y, Matsumoto H, Mitchell J, Moiseev A, Nishimura J, Nozaki M, Ormes J F, Orito S, Sanuki T, Sasaki M, Shikaze Y, Streitmatter R E, Suzuki J, Tanaka K, Yamagami T, Yamamoto A, Yoshida T, Yoshimura K 2003 In International Cosmic Ray Conference Tsukuba, Japan, July 31–August 7, 2003 p1805

    [18]

    Wang J Z, Seo E S, Anraku K, Fujikawa M, Imori M, Maeno T, Matsui N, Matsunaga H, Motoki M, Orito S, Saeki T, Sanuki T, Ueda I, Yoshimura K, Makida Y, Suzuki J, Tanaka K, Yamamoto A, Yoshida T, Mitsui T, Matsumoto H, Nozaki M, Sasaki M, Mitchell J, Moiseev A, Ormes J, Streitmatter R, Nishimura J, Yajima Y, Yamagami T 2002 Astrophys. J. 564 244Google Scholar

    [19]

    Casolino M, Santis C D, Simone N D, Formato V, Nikonov N, Picozza P 2011 Astrophys. Space Sci. Trans. 7 465Google Scholar

    [20]

    Abe K, Fuke H, Haino S, Hams T, Hasegawa M, Horikoshi A, Itazaki A, Kim K C, Kumazawa T, Kusumoto A, Lee M H, Makida Y, Matsuda S, Matsukawa Y, Matsumoto K, Mitchell J W, Moiseev A A, Nishimura J, Nozaki M, Orito R, Ormes J F, Picot-Clémente N, Sakai K, Sasaki M, Seo E S, Shikaze Y, Shinoda R, Streitmatter R E, Suzuki J, Takasugi Y, Takeuchi K, Tanaka K, Thakur N, Yamagami T, Yamamoto A, Yoshida T, Yoshimura K 2014 Adv. Space Res. 53 1426Google Scholar

    [21]

    Grimani C, Vocca H, Bagni G, Marconi L, Stanga R, Vetrano F, Viceré A, Amico P, Gammaitoni L, Marchesoni F 2005 Classical. Quantum Gravity. 22 S327Google Scholar

    [22]

    Papini P, Grimani C, Stephens S A 1996 Il Nuovo Cim. C 19 367Google Scholar

    [23]

    Grimani C, Vocca H, Barone M, Stanga R, Vetrano F, Viceré A, Amico P, Bosi L, Marchesoni F, Punturo M, Travasso F 2004 Classical. Quantum Gravity. 21 S629Google Scholar

  • 图 1  LISA航天器模型 (a)整体模型; (b)惯性传感器模型

    Figure 1.  LISA spacecraft model: (a) Overall model; (b) inertial sensor model.

    图 2  本文航天器模型图 (a) geant4模型图; (b)模型平面示意图

    Figure 2.  The spacecraft model diagram in this paper: (a) Geant4 model diagram; (b) schematic diagram of the model plane.

    图 3  1 AU处GCR各粒子微分能谱

    Figure 3.  Differential energy spectra of each element of GCR at 1 AU.

    图 4  1AU处1989年SEP微分能谱

    Figure 4.  1989 SEP differential energy spectra at 1AU.

    图 5  宇宙线Proton和He(3He和4He)微分能谱

    Figure 5.  Differential energy spectra of cosmic rays Proton and He (3He and 4He).

    图 6  不同截断长度的充电速率

    Figure 6.  Charging rate with different cut-off lengths.

    图 7  宇宙线各粒子的充电率 (a) 太阳活动极小年; (b) 太阳活动极大年

    Figure 7.  The charging rate of each particle of cosmic rays: (a) Solar minimum year; (b) solar maximum year.

    图 8  宇宙线各粒子的充电能力

    Figure 8.  The charging ability of each particle of the cosmic ray

    图 9  太阳活动极小充电能力 (a) 不同能量充电能力和质子通量; (b) 充电能力和结合质子通量的总充电比例

    Figure 9.  Solar minimum charging capacity: (a) Different energy charging capacity and proton flux; (b) charging capacity and total charge ratio of combined proton flux.

    表 1  航天器几何尺寸和材料构成

    Table 1.  Spacecraft geometric dimensions and material composition.

    名称组成成分密度/(g·cm–3)尺寸厚度/mm
    测试质量Au(70%); Pt(30%)19.83746 mm立方体
    钼电极Mo10.2874—86 mm立方体壳层6
    钛室Ti4.5475—80 mm球壳层5
    碳外壳C2.1080—100 mm球壳层20
    DownLoad: CSV

    表 2  太阳极小年3He/4He的参数化比例C(m)

    Table 2.  The parameterized ratio C(m) of 3He/4He in solar minimum.

    E/(GeV·n–1)0.10 ≤ E ≤ 0.360.36 ≤ E ≤ 1.001.00 ≤ E ≤ 1.40E > 1.40
    C(m)0.335 × E0.5690.1870.187 × E0.4910.22
    DownLoad: CSV

    表 3  太阳极大年3He/4He的参数化比例C(M)

    Table 3.  The parameterized ratio C(M) of 3He/4He during solar maximum.

    E/(GeV·n–1)0.10 ≤ E ≤ 0.300.30 ≤ E ≤ 0.800.80 ≤ E ≤ 2.50E > 2.50
    C(M)0.239 × E0.5380.1250.140 × E0.4960.22
    DownLoad: CSV

    表 4  太阳极小年宇宙线主要粒子仿真参数

    Table 4.  The main particle simulation parameters of cosmic rays during solar minimum.

    粒子种类粒子数目/个暴露时间/s积分通量/(cm–2·s–1)
    Proton700000353.654.375
    3He1000003563.350.062
    4He120000806.260.329
    C10000021052.630.0105
    N10000077561.470.00285
    O10000022128.790.00999
    Ne1000013644.980.00162
    Mg1000010476.250.00211
    Si1000014542.700.00152
    Fe1000019562.200.00113
    DownLoad: CSV

    表 5  太阳极大年宇宙线主要粒子仿真参数

    Table 5.  The main particle simulation parameters of cosmic rays during solar maximum.

    粒子种类粒子数目/个暴露时间/s积分通量/(cm–2·s–1)
    Proton700000353.654.375
    3He1000003563.350.062
    4He120000806.260.329
    DownLoad: CSV

    表 6  1989年9月29日太阳高能粒子事件仿真参数

    Table 6.  Simulation parameters of the SEP event on September 29, 1989.

    粒子种类粒子数目/个暴露时间/s积分通量/(cm–2·s–1)
    Proton5000000.1507385.53
    DownLoad: CSV

    表 7  宇宙线初、次级粒子造成的充电率

    Table 7.  Charge rate caused by primary and secondary particles of cosmic rays.

    粒子
    种类
    初级粒子充电
    率/(+e·s–1)
    次级粒子充电
    率/(+e·s–1)
    初级粒子
    充电率占比
    Proton22.01610.80567.07%
    3He1.196–0.029100%
    4He5.125–0.100100%
    C0.1820.02388.78%
    N0.0420.00982.35%
    O0.1230.02086.01%
    Ne0.01320.002683.54%
    Mg0.01370.006468.16%
    Si0.00870.005860%
    Fe00.00840%
    DownLoad: CSV
  • [1]

    Sathyaprakash B S, Schutz B F 2009 Living Rev. Relativ. 12 1Google Scholar

    [2]

    雷中华, 兰明建, 汪先友, 李建杰 2008 物理学报 57 7408Google Scholar

    Lei Z H, Lan M J, Wang X Y, Li J J 2008 Acta Phys. Sin. 57 7408Google Scholar

    [3]

    Jafry Y, Sumner T J, Buchman S 1996 Classical Quantum Gravity 13 A97Google Scholar

    [4]

    Jafry Y, Sumner T J 1997 Classical Quantum Gravity 14 1567Google Scholar

    [5]

    Sumner T J, Jafry Y 2000 Adv. Space Res. 25 1219Google Scholar

    [6]

    Araújo H M, Howard A, Shaul D, Sumner T J 2003 Classical Quantum Gravity 20 S311Google Scholar

    [7]

    Shaul D N A, Sumner T J, Araújo H M, Rochester G K, Wass P J, Lee C G Y 2004 Classical Quantum Gravity 21 S647Google Scholar

    [8]

    Sumner T, Araújo H, Davidge D, Howard A, Lee C, Rochester G, Shaul D, Wass P 2004 Classical Quantum Gravity 21 S597Google Scholar

    [9]

    Vocca H, Grimani C, Amico P, Bosi L, Marchesoni F, Punturo M, Travasso F, Barone M, Stanga R, Vetrano F, Viceré A 2004 Classical Quantum Gravity 21 S665Google Scholar

    [10]

    包纲, 倪维斗, 柳磊, Araújo H, Shaul D, Sumner T 2004 紫金山天文台台刊 23 105

    Bao G, Ni W T, Liu L, Araújo H, Shaul D, Sumner T 2004 Publ. Purple Mt. Observatory 23 105

    [11]

    Bao G, Ni W T, Shaul D N A, Araújo H M, Liu L, Sumner T J 2008 Int. J. Mod. Phys. D 17 965Google Scholar

    [12]

    Grimani C, Fabi M, Lobo A, Mateos I, Telloni D 2015 Classical. Quantum Gravity. 32 035001Google Scholar

    [13]

    Wass P J, Araújo H M, Shaul D N A, Sumner T J 2005 Classical. Quantum Gravity. 22 S311Google Scholar

    [14]

    Armano M, Audley H, Auger G, Baird J T, Binetruy P, Born M, Bortoluzzi D, Brandt N, Bursi A, Caleno M, Cavalleri A, Cesarini A, Cruise M, Danzmann K, Silva M, Diepholz I, Dolesi R, Dunbar N, Ferraioli L, Ferroni V, Fitzsimons E D, Flatscher R, Freschi M, Gallegos J, Marirrodriga C, Gerndt R, Gesa L, Gibert F, Giardini D, Giusteri R, Grimani C, Grzymisch J, Harrison I, Heinzel G, Hewitson M, Hollington D, Hueller M, Huesler J, Inchauspé H, Jennrich O, Jetzer P, Johlander B, Karnesis N, Kaune B, Killow C J, Korsakova N, Lloro I, Liu L, López-Zaragoza J P, Maarschalkerweerd R, Madden S, Mance D, Martín V, Martin-Polo L, Martino J, Martin-Porqueras F, Mateos I, McNamara P W, Mendes J, Mendes L, Moroni A, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Prat P, Ragnit U, Ramos-Castro J, Reiche J, Perez J A, Robertson D I, Rozemeijer H, Rivas F, Russano G, Sarra P, Schleicher A, Slutsky J, Sopuerta C, Sumner T J, Texier D, Thorpe J I, Trenkel C, Vetrugno D, Vitale S, Wanner G, Ward H, Wass P J, Wealthy D, Weber W J, Wittchen A, Zanoni C, Ziegler T, Zweifel P 2017 Phys. Rev. Lett. 118 171101Google Scholar

    [15]

    Araújo H M, Wass P, Shaul D, Rochester G, Sumner T J 2005 Astropart. Phys. 22 451Google Scholar

    [16]

    罗子人, 白姗, 边星, 陈葛瑞, 董鹏, 董玉辉, 高伟, 龚雪飞, 贺建武, 李洪银, 李向前, 李玉琼, 刘河山, 邵明学, 宋同消, 孙保三, 唐文林, 徐鹏, 徐生年, 杨然, 靳刚 2013 力学进展 43 415Google Scholar

    Luo Z R, Bai S, Bian X, Chen G R, Dong P, Dong Y H, Gao W, Gong X F, He J W, Li H Y, Li X Q, Li Y Q, Liu S H, Shao M X, Song T X, Sun B S, Tang W L, Xu P, Xu S N, Yang R, Jin G 2013 Adv. Mech. 43 415Google Scholar

    [17]

    Myers Z D, Seo E S, Abe K, Anraku K, Imori M, Maeno T, Makida Y, Matsumoto H, Mitchell J, Moiseev A, Nishimura J, Nozaki M, Ormes J F, Orito S, Sanuki T, Sasaki M, Shikaze Y, Streitmatter R E, Suzuki J, Tanaka K, Yamagami T, Yamamoto A, Yoshida T, Yoshimura K 2003 In International Cosmic Ray Conference Tsukuba, Japan, July 31–August 7, 2003 p1805

    [18]

    Wang J Z, Seo E S, Anraku K, Fujikawa M, Imori M, Maeno T, Matsui N, Matsunaga H, Motoki M, Orito S, Saeki T, Sanuki T, Ueda I, Yoshimura K, Makida Y, Suzuki J, Tanaka K, Yamamoto A, Yoshida T, Mitsui T, Matsumoto H, Nozaki M, Sasaki M, Mitchell J, Moiseev A, Ormes J, Streitmatter R, Nishimura J, Yajima Y, Yamagami T 2002 Astrophys. J. 564 244Google Scholar

    [19]

    Casolino M, Santis C D, Simone N D, Formato V, Nikonov N, Picozza P 2011 Astrophys. Space Sci. Trans. 7 465Google Scholar

    [20]

    Abe K, Fuke H, Haino S, Hams T, Hasegawa M, Horikoshi A, Itazaki A, Kim K C, Kumazawa T, Kusumoto A, Lee M H, Makida Y, Matsuda S, Matsukawa Y, Matsumoto K, Mitchell J W, Moiseev A A, Nishimura J, Nozaki M, Orito R, Ormes J F, Picot-Clémente N, Sakai K, Sasaki M, Seo E S, Shikaze Y, Shinoda R, Streitmatter R E, Suzuki J, Takasugi Y, Takeuchi K, Tanaka K, Thakur N, Yamagami T, Yamamoto A, Yoshida T, Yoshimura K 2014 Adv. Space Res. 53 1426Google Scholar

    [21]

    Grimani C, Vocca H, Bagni G, Marconi L, Stanga R, Vetrano F, Viceré A, Amico P, Gammaitoni L, Marchesoni F 2005 Classical. Quantum Gravity. 22 S327Google Scholar

    [22]

    Papini P, Grimani C, Stephens S A 1996 Il Nuovo Cim. C 19 367Google Scholar

    [23]

    Grimani C, Vocca H, Barone M, Stanga R, Vetrano F, Viceré A, Amico P, Bosi L, Marchesoni F, Punturo M, Travasso F 2004 Classical. Quantum Gravity. 21 S629Google Scholar

  • [1] WANG DeXin, ZHANG Rui, YU DeKang, NA Hui, YAO ZhangHao, WU LingHe, ZHANG SuYaLaTu, LIANG TaiRan, HUANG MeiRong, WANG ZhiLong, BAI Yu, HUANG YongShun, YANG Xue, ZHANG JiaWen, LIU MengDi, MA Qiang, YU Jing, JI XiuYan, YU YiLiQi, SHAO XuePeng. Observation and Research on Cosmic Ray Muons and Solar Modulation Effect Based on Plastic Scintillator Detector. Acta Physica Sinica, 2025, 74(5): . doi: 10.7498/aps.74.20241704
    [2] Bai Yu-Rong, Li Pei, He Huan, Liu Fang, Li Wei, He Chao-Hui. Simulation of displacement damage of InP induced by protons and α-particles in low Earth orbit. Acta Physica Sinica, 2024, 73(5): 052401. doi: 10.7498/aps.73.20231499
    [3] Yang Wei-Tao, Wu Yi-Chen, Xu Rui-Ming, Shi Guang, Ning Ti, Wang Bin, Liu Huan, Guo Zhong-Jie, Yu Song-Lin, Wu Long-Sheng. Geant4 simulation of Hg1–xCdxTe infrared focal plane array image sensor space proton displacement damage and total ionizing dose effects. Acta Physica Sinica, 2024, 73(23): 232402. doi: 10.7498/aps.73.20241246
    [4] Liu Ye, Niu He-Ran, Li Bing-Bing, Ma Xin-Hua, Cui Shu-Wang. Application of machine learning in cosmic ray particle identification. Acta Physica Sinica, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [5] Li Wei, Bai Yu-Rong, Guo Hao-Xuan, He Chao-Hui, Li Yong-Hong. Geant4 simulation of neutron displacement damage effect in InP. Acta Physica Sinica, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [6] Zhang Feng, Liu Hu, Zhu Feng-Rong. Properties of secondary components in extensive air shower of cosmic rays in knee energy region. Acta Physica Sinica, 2022, 71(24): 249601. doi: 10.7498/aps.71.20221556
    [7] Huang Zhi-Cheng, Zhou Xun-Xiu, Huang Dai-Hui, Jia Huan-Yu, Chen Song-Zhan, Ma Xin-Hua, Liu Dong, AXi Ke-Gu, Zhao Bing, Chen Lin, Wang Pei-Han. Simulation study of scaler mode at large high altitude air shower observatory. Acta Physica Sinica, 2021, 70(19): 199301. doi: 10.7498/aps.70.20210632
    [8] Bai Yu-Rong, Li Yong-Hong, Liu Fang, Liao Wen-Long, He Huan, Yang Wei-Tao, He Chao-Hui. Simulation of displacement damage in indium phosphide induced by space heavy ions. Acta Physica Sinica, 2021, 70(17): 172401. doi: 10.7498/aps.70.20210303
    [9] Xie Fei, Zang Hang, Liu Fang, He Huan, Liao Wen-Long, Huang Yu. Simulated research on displacement damage of gallium nitride radiated by different neutron sources. Acta Physica Sinica, 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [10] Shen Shuai-Shuai, He Chao-Hui, Li Yong-Hong. Non-ionization energy loss of proton in different regions in SiC. Acta Physica Sinica, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [11] Yao Zhi-Ming, Duan Bao-Jun, Song Gu-Zhou, Yan Wei-Peng, Ma Ji-Ming, Han Chang-Cai, Song Yan. A method of evaluating the relative light yield of ST401 irradiated by pulsed neutron. Acta Physica Sinica, 2017, 66(6): 062401. doi: 10.7498/aps.66.062401
    [12] Jia Qing-Gang, Zhang Tian-Kui, Xu Hai-Bo. Optimization design of a Gamma-to-electron spectrometer for high energy gammas induced by fusion. Acta Physica Sinica, 2017, 66(1): 010703. doi: 10.7498/aps.66.010703
    [13] Zhou Xun-Xiu, Wang Xin-Jian, Huang Dai-Hui, Jia Huan-Yu, Wu Chao-Yong. Simulation study on the correlation between the ground cosmic rays and the near earth thunderstorms electric field at Yangbajing (Tibet China). Acta Physica Sinica, 2015, 64(14): 149202. doi: 10.7498/aps.64.149202
    [14] Wang Jun-Fang, Qie Xiu-Shu, Lu Hong, Zhang Ji-Long, Yu Xiao-Xia, Shi Feng. Effect of thunderstorm electric field on intensity of cosmic ray muons. Acta Physica Sinica, 2012, 61(15): 159202. doi: 10.7498/aps.61.159202
    [15] Wang Yu-Zhao, Wu Xin, Zhong Shuang-Ying. Characterization of gravitational waves from spinning compact binaries. Acta Physica Sinica, 2012, 61(16): 160401. doi: 10.7498/aps.61.160401
    [16] Zhong Shuang-Ying, Liu Song. Study on gravitational waveform from post-Newtonian orbits of spinning compact binary. Acta Physica Sinica, 2012, 61(12): 120401. doi: 10.7498/aps.61.120401
    [17] Qin Xiao-Gang, He De-Yan, Wang Ji. Geant 4-based calculation of electric field in deep dielectric charging. Acta Physica Sinica, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [18] Lei Zhong-Hua, Lan Ming-Jian, Wang Xian-You, Li Jian-Jie. Influence in polarization of cosmic microwave background radiation due to relic gravitational waves. Acta Physica Sinica, 2008, 57(11): 7408-7414. doi: 10.7498/aps.57.7408
    [19] XU BU-XIN, QIN RONG-XIAN. DESIGN OF A TUNING FORK ANTENNA WITH COLLECTIVE MASS FOR DETECTING GRAVITATIONAL RADIATION FROM VELA PULSAR. Acta Physica Sinica, 1982, 31(8): 1097-1106. doi: 10.7498/aps.31.1097
    [20] . Acta Physica Sinica, 1960, 16(3): 175-176. doi: 10.7498/aps.16.175
Metrics
  • Abstract views:  6067
  • PDF Downloads:  115
  • Cited By: 0
Publishing process
  • Received Date:  20 April 2021
  • Accepted Date:  26 August 2021
  • Available Online:  07 September 2021
  • Published Online:  20 November 2021

/

返回文章
返回