Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation study on the correlation between the ground cosmic rays and the near earth thunderstorms electric field at Yangbajing (Tibet China)

Zhou Xun-Xiu Wang Xin-Jian Huang Dai-Hui Jia Huan-Yu Wu Chao-Yong

Citation:

Simulation study on the correlation between the ground cosmic rays and the near earth thunderstorms electric field at Yangbajing (Tibet China)

Zhou Xun-Xiu, Wang Xin-Jian, Huang Dai-Hui, Jia Huan-Yu, Wu Chao-Yong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Coincident study on the intensity change of the ground cosmic rays during thunderstorms is very important for understanding the acceleration mechanism of secondary charged particles caused by atmospheric electric field. It is found that the strength of the near earth thunderstorm electric field can be up to 1000 V/cm or even higher from ARGO-YBJ (where YBJ stands for Yangbajing, 4300 m a.s.l., Tibet, China) data in 2012. In this paper, Monte Carlo simulations are performed by using CORSIKA program to study the correlations between the intensity of the ground cosmic rays and the near earth thunderstorm electric field at YBJ. When the atmospheric electric field strength is higher than the threshold field strength (ERB) for the development of a runaway breakdown process, the total number of electrons and positrons is exponentially increases. At an electric field strength of 1500 V/cm, the number increases exponentially and reaches a maximum value at an atmospheric depth of ~520 g/cm2, where the electric field is slightly stronger than the threshold field strength. These results are consistent with the theoretical results of relativistic runaway electron avalanche (RREA) which was proposed by Gurevich et al. (Gurevich A V, Milikh G M, Roussel-Dupre R 1992 Phys. Lett. A 165 463) and also supports Dwyer's theory. The total number of electrons and positrons increases with the strength of the field in the negative field or in the positive field greater than 600 V/cm, while a certain degree of decline occurs in the positive field less than 400 V/cm. In the range 400-600 V/cm, the energy of the primary proton should be taken into account. For the primary energy that is lower than 80 GeV, the total number of electrons and positrons increases. And it does not change obviously when the energy is between 80 GeV and 120 GeV. For the primary energy exceeds 120 GeV, the number drops off, and the decrease is of ~4%. During thunderstorms, a short duration occurs in which the single particle counting rate increases as energy lowers, while a decrease happens with energy becoming higher than that from ARGO-YBJ data. Our preliminary results can give reasonable explanations to the experimental observations of ARGO-YBJ.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175147, 11475141) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2682014CX091).
    [1]

    Wilson C T R 1924 Proc. Phys. Soc. London 37 32D

    [2]

    Gurevich A V, Milikh G M, Roussel-Dupre R 1992 Phys. Lett. A 165 463

    [3]

    Cramer E S, Dwyer J R, Arabshahi S, Vodopiyanov I B, Liu N, Rassoul H K 2014 J. Geophy. Res. Space Phys. 119 7794

    [4]

    Alexeenko V V, Chernyaev A B, Chudakov A E, Khaerdinov N S, Ozrokov S K, Sborshikov V G 1985 Proceedings of the 19th International Cosmic Ray Conference La Jolla, USA, August 11-23, 1985 p352

    [5]

    Vernetto S 2001 Proceedings of the 27th International Cosmic Ray Conference Hamburg, Germany, August 7-15, 2001 p4165

    [6]

    Tsuchiya H, Enoto T, Torii T, Nakazawa K, Yuasa T, Torii S, Fukuyama T, Yamaguchi T, Kato H, Okano M, Takita M, Makishima K 2009 Phys. Rev. Lett. 102 255003

    [7]

    Chilingarian A, Daryan A, Arakelyan K, Hovhannisyan A, Mailyan B, Melkumyan L, Hovsepyan G, Chilingaryan S, Reymers A, Vanyan L 2010 Phys. R. D 82 043009

    [8]

    Chilingarian A, Hovsepyan G, Hovhannisyan A 2011 Phys. R. D 83 062001

    [9]

    Wang J F, Qie X S, Lu H, Zhang J L, Yu X X, Shi F 2012 Acta Phys. Sin. 61 159202 (in Chinese) [王俊芳, 郄秀书, 卢红, 张吉龙, 于晓霞, 石峰 2012 物理学报 61 159202]

    [10]

    Alexeenko V V, Khaerdinov N S, Lidvansky A S, Petkov V B 2002 Phys. Lett. A 301 299

    [11]

    Xu B, Bie Y G, Zou D 2012 Chin. J. Space Sci. 32 501 (in Chinese) [徐斌, 别业广, 邹丹 2012 空间科学学报 32 501

    [12]

    Zhou X M ,Ye N, Zhu F R, Jia H Y 2011 Proceedings of the 32th International Cosmic Ray Conferenc Beijing, China, August 11-18, 2011 p287

    [13]

    Bielajew A F 1988 Electron Transport in \bm E and \bm B Fields, in Monte Carlo Transport of Electrons and Photons (New York: Plenum Press) pp421-434

    [14]

    Dwyer J R, Uman M A 2014 Physics Reports 534 147

    [15]

    Schellart P, Trinh T N G, Buitink S 2015 Phys. Rev. Lett. 114 165001

    [16]

    Liu D X, Qie X S, Wang Z C, Wu X K, Pan L X 2013 Acta Phys. Sin. 62 219201 (in Chinese) [刘冬霞, 郄秀书, 王志超, 吴学珂, 潘伦湘 2013 物理学报 62 219201]

    [17]

    Stolzenburg M, Marshall T C, Rust W D, Bruning E, MacGorman D R, Hamlin T 2007 Geophys. Res. Lett. 34 L04804

    [18]

    Marshall T C, Stolzenburg M, Maggio C R, Coleman L M, Krehbiel P R, Hamlin T, Thomas R J, Rison W 2005 Geophys. Res. Lett. 32 L03813

    [19]

    Xu B, He H, Yang X Y, Bie Y G, Lü Q H 2012 Acta Phys. Sin. 61 175203 (in Chinese) [徐斌, 贺华, 杨晓艳, 别业广, 吕清花 2012 物理学报 61 175203]

    [20]

    Dwyer J R 2003 Geophys. Res. Lett. 30 2055

    [21]

    Symbalisty E M D, Roussel-Dupre R, Yukhimuk V A 1998 IEEE Trans. Plasma Sci. 26 1575

    [22]

    Buitink S, Huege T, Falcke H, Heck D, Kuijpers J 2010 Astropart. Phys. 33 1

    [23]

    Bethe H A 1930 Annalen der Physik 397 325

  • [1]

    Wilson C T R 1924 Proc. Phys. Soc. London 37 32D

    [2]

    Gurevich A V, Milikh G M, Roussel-Dupre R 1992 Phys. Lett. A 165 463

    [3]

    Cramer E S, Dwyer J R, Arabshahi S, Vodopiyanov I B, Liu N, Rassoul H K 2014 J. Geophy. Res. Space Phys. 119 7794

    [4]

    Alexeenko V V, Chernyaev A B, Chudakov A E, Khaerdinov N S, Ozrokov S K, Sborshikov V G 1985 Proceedings of the 19th International Cosmic Ray Conference La Jolla, USA, August 11-23, 1985 p352

    [5]

    Vernetto S 2001 Proceedings of the 27th International Cosmic Ray Conference Hamburg, Germany, August 7-15, 2001 p4165

    [6]

    Tsuchiya H, Enoto T, Torii T, Nakazawa K, Yuasa T, Torii S, Fukuyama T, Yamaguchi T, Kato H, Okano M, Takita M, Makishima K 2009 Phys. Rev. Lett. 102 255003

    [7]

    Chilingarian A, Daryan A, Arakelyan K, Hovhannisyan A, Mailyan B, Melkumyan L, Hovsepyan G, Chilingaryan S, Reymers A, Vanyan L 2010 Phys. R. D 82 043009

    [8]

    Chilingarian A, Hovsepyan G, Hovhannisyan A 2011 Phys. R. D 83 062001

    [9]

    Wang J F, Qie X S, Lu H, Zhang J L, Yu X X, Shi F 2012 Acta Phys. Sin. 61 159202 (in Chinese) [王俊芳, 郄秀书, 卢红, 张吉龙, 于晓霞, 石峰 2012 物理学报 61 159202]

    [10]

    Alexeenko V V, Khaerdinov N S, Lidvansky A S, Petkov V B 2002 Phys. Lett. A 301 299

    [11]

    Xu B, Bie Y G, Zou D 2012 Chin. J. Space Sci. 32 501 (in Chinese) [徐斌, 别业广, 邹丹 2012 空间科学学报 32 501

    [12]

    Zhou X M ,Ye N, Zhu F R, Jia H Y 2011 Proceedings of the 32th International Cosmic Ray Conferenc Beijing, China, August 11-18, 2011 p287

    [13]

    Bielajew A F 1988 Electron Transport in \bm E and \bm B Fields, in Monte Carlo Transport of Electrons and Photons (New York: Plenum Press) pp421-434

    [14]

    Dwyer J R, Uman M A 2014 Physics Reports 534 147

    [15]

    Schellart P, Trinh T N G, Buitink S 2015 Phys. Rev. Lett. 114 165001

    [16]

    Liu D X, Qie X S, Wang Z C, Wu X K, Pan L X 2013 Acta Phys. Sin. 62 219201 (in Chinese) [刘冬霞, 郄秀书, 王志超, 吴学珂, 潘伦湘 2013 物理学报 62 219201]

    [17]

    Stolzenburg M, Marshall T C, Rust W D, Bruning E, MacGorman D R, Hamlin T 2007 Geophys. Res. Lett. 34 L04804

    [18]

    Marshall T C, Stolzenburg M, Maggio C R, Coleman L M, Krehbiel P R, Hamlin T, Thomas R J, Rison W 2005 Geophys. Res. Lett. 32 L03813

    [19]

    Xu B, He H, Yang X Y, Bie Y G, Lü Q H 2012 Acta Phys. Sin. 61 175203 (in Chinese) [徐斌, 贺华, 杨晓艳, 别业广, 吕清花 2012 物理学报 61 175203]

    [20]

    Dwyer J R 2003 Geophys. Res. Lett. 30 2055

    [21]

    Symbalisty E M D, Roussel-Dupre R, Yukhimuk V A 1998 IEEE Trans. Plasma Sci. 26 1575

    [22]

    Buitink S, Huege T, Falcke H, Heck D, Kuijpers J 2010 Astropart. Phys. 33 1

    [23]

    Bethe H A 1930 Annalen der Physik 397 325

  • [1] Axikegu, Zhou Xun-Xiu, Zhang Yun-Feng. Effects of thunderstorms electric field on secondary photons of cosmic ray at large high altitude air shower observatory. Acta Physica Sinica, 2024, 73(12): 129201. doi: 10.7498/aps.73.20240341
    [2] Liu Ye, Niu He-Ran, Li Bing-Bing, Ma Xin-Hua, Cui Shu-Wang. Application of machine learning in cosmic ray particle identification. Acta Physica Sinica, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [3] Zhang Feng, Liu Hu, Zhu Feng-Rong. Properties of secondary components in extensive air shower of cosmic rays in knee energy region. Acta Physica Sinica, 2022, 71(24): 249601. doi: 10.7498/aps.71.20221556
    [4] Han Rui-Long, Cai Ming-Hui, Yang Tao, Xu Liang-Liang, Xia Qing, Han Jian-Wei. Mechanism of cosmic ray high-energy particles charging test mass. Acta Physica Sinica, 2021, 70(22): 229501. doi: 10.7498/aps.70.20210747
    [5] Huang Zhi-Cheng, Zhou Xun-Xiu, Huang Dai-Hui, Jia Huan-Yu, Chen Song-Zhan, Ma Xin-Hua, Liu Dong, AXi Ke-Gu, Zhao Bing, Chen Lin, Wang Pei-Han. Simulation study of scaler mode at large high altitude air shower observatory. Acta Physica Sinica, 2021, 70(19): 199301. doi: 10.7498/aps.70.20210632
    [6] Wang Chao, Zhou Yan-Li, Wu Fan, Chen Ying-Cai. Monte Carlo simulation on the adsorption of polymer chains on polymer brushes. Acta Physica Sinica, 2020, 69(16): 168201. doi: 10.7498/aps.69.20200411
    [7] Wang Chao, Chen Ying-Cai, Zhou Yan-Li, Luo Meng-Bo. Diffusion of diblock copolymer in periodical channels:a Monte Carlo simulation study. Acta Physica Sinica, 2017, 66(1): 018201. doi: 10.7498/aps.66.018201
    [8] Lu Chang-Bing, Xu Peng, Bao Jie, Wang Zhao-Hui, Zhang Kai, Ren Jie, Liu Yan-Feng. Simulation analysis and experimental verification of fast neutron radiography. Acta Physica Sinica, 2015, 64(19): 198702. doi: 10.7498/aps.64.198702
    [9] Zheng Hui, Zhang Chong-Hong, Chen Bo, Yang Yi-Tao, Lai Xin-Chun. Inhibition effect of low-temperature pre-irradiation of helium ions on the growth of helium bubble in stainless steel:a Monte Carlo simulation. Acta Physica Sinica, 2014, 63(10): 106102. doi: 10.7498/aps.63.106102
    [10] Wang Jun-Fang, Qie Xiu-Shu, Lu Hong, Zhang Ji-Long, Yu Xiao-Xia, Shi Feng. Effect of thunderstorm electric field on intensity of cosmic ray muons. Acta Physica Sinica, 2012, 61(15): 159202. doi: 10.7498/aps.61.159202
    [11] Zhou Yu-Lu, Li Ren-Shun, Zhang Bao-Ling, Deng Ai-Hong, Hou Qing. Monte Carlo simulations of the evolution of helium depth distribution in materials. Acta Physica Sinica, 2011, 60(6): 060702. doi: 10.7498/aps.60.060702
    [12] Guo Bao-Zeng, Zhang Suo-Liang, Liu Xin. Electron transport property in wurtzite GaN at high electric field with Monte Carlo simulation. Acta Physica Sinica, 2011, 60(6): 068701. doi: 10.7498/aps.60.068701
    [13] Gao Qian, Lou Xiao-Yan, Qi Yang, Shan Wen-Guang. Monte Carlo simulation on the property of ferromagnetic order of Zn1- x Mn x O Nanofilms. Acta Physica Sinica, 2011, 60(3): 036401. doi: 10.7498/aps.60.036401
    [14] Yao Wen-Jing, Wang Nan. Monte Carlo simulation of thermophysical properties of Ni-15%Mo alloy melt. Acta Physica Sinica, 2009, 58(6): 4053-4058. doi: 10.7498/aps.58.4053
    [15] Huang Chao-Jun, Liu Ya-Feng, Long Shu-Ming, Sun Yan-Qing, Wu Zhen-Sen. Monte Carlo simulation of transfer-characteristics of electromagnetic wave propagating in soot. Acta Physica Sinica, 2009, 58(4): 2397-2404. doi: 10.7498/aps.58.2397
    [16] Xiao Pei, Zhang Zeng-Ming, Sun Xia, Ding Ze-Jun. Monte Carlo simulation of electron transmission through masks in projection electron lithography. Acta Physica Sinica, 2006, 55(11): 5803-5809. doi: 10.7498/aps.55.5803
    [17] Gao Guo-Liang, Qian Chang-Ji, Zhong Rui, Luo Meng-Bo, Ye Gao-Xiang. Monte Carlo simulation of cluster growth on an inhomogeneous substrate. Acta Physica Sinica, 2006, 55(9): 4460-4465. doi: 10.7498/aps.55.4460
    [18] Gao Guo-Liang, Qian Chang-Ji, Li Hong, Huang Xiao-Hong, Gu Wen-Jing, Ye Gao-Xiang. Computer simulation for ramified aggregates on nonlattice substrates with impurities. Acta Physica Sinica, 2005, 54(6): 2600-2605. doi: 10.7498/aps.54.2600
    [19] WU FENG-MIN, SHI JIAN-QING, WU ZI-QIN. SIMULATION OF THE INITIAL GROWTH OF METAL THIN FILMS AT HIGH TEMPERATURE. Acta Physica Sinica, 2001, 50(8): 1555-1559. doi: 10.7498/aps.50.1555
    [20] SHANG YE-CHUN, ZHANG YI-MEN, ZHANG YU-MING. MONTE CARLO SIMULATION OF ELECTRON TRANSPORT IN 6H-SiC. Acta Physica Sinica, 2000, 49(9): 1786-1791. doi: 10.7498/aps.49.1786
Metrics
  • Abstract views:  6664
  • PDF Downloads:  185
  • Cited By: 0
Publishing process
  • Received Date:  11 March 2015
  • Accepted Date:  24 April 2015
  • Published Online:  05 July 2015

/

返回文章
返回