Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Diffusion of diblock copolymer in periodical channels:a Monte Carlo simulation study

Wang Chao Chen Ying-Cai Zhou Yan-Li Luo Meng-Bo

Citation:

Diffusion of diblock copolymer in periodical channels:a Monte Carlo simulation study

Wang Chao, Chen Ying-Cai, Zhou Yan-Li, Luo Meng-Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In recent years, the static and the dynamical properties of polymer confined in nano-channels have become a hot topic due to its potential applications in technology, such as genome mapping, DNA controlling and sequencing, DNA separation, etc. From the viewpoint of polymer physics, the properties of polymer confined in nano-channels are affected by many factors, such as the channel size, the channel geometry, the polymer-channel interaction, etc. Consequently, many researches have been extensively performed to uncover the underlying physical mechanisms of the static and the dynamical properties of polymer confined in nano-channels. Although many conformations are forbidden as polymer is confined in channels, the static properties of polymer are found to be still complicated. For the simplest case, i.e., homo-polymer confined in homogeneous solid channels, there are several scaling regimes, in which polymer adopts different conformation modes and the extension of polymer shows different scaling relations with the channel diameter, the polymer length, the persistence length, etc. In addition, the dynamical properties of polymer, such as the diffusivity and the relaxation, have also been extensively studied. Though the properties of polymer confined in homogeneous channels have been well studied, we know little about those of polymer inside compound channels. It is found that the dynamics of polymer in compound channels is quite different from that of polymer in homogeneous channels, and compound channel could be useful for DNA separation and DNA controlled movement.In this work, the diffusion of diblock copolymer(ANABNB) in periodical channels patterned alternately by part and part with the same length lp/2 is studied by using Monte Carlo simulation. The interaction between monomer A and channel is attractive, while all other interactions are purely repulsive. Results show that the diffusion of polymer is remarkably affected by the length of block A(NA), and the diffusion constant D changes periodically with NA. Near the peaks of D, the projected length of block A along the channel is an even multiple of lp/2, and the diffusion is in consistence with that of homo-polymer in homogenous channels. While near the valleys of D, the projected length of block A is an odd multiple of lp/2, and polymer is in a state with long time trapping and rapid jumping to other trapped regions in the diffusion process. The physical mechanisms are discussed from the view of polymer-channel interaction energy landscape.
      Corresponding author: Wang Chao, chaowang0606@126.com;luomengbo@zju.edu.cn ; Luo Meng-Bo, chaowang0606@126.com;luomengbo@zju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 11604232, 11474222, 11374255) and Zhejiang Provincial Natural Science Foundation of China(Grant Nos. LQ14A040006, LY16A040004).
    [1]

    Lam E T, Hastie A, Lin C, Ehrlich D, Das S K, Austin M D, Deshpande P, Cao H, Nagarajan N, Xiao M, Kwok P Y 2012 Nat. Biotechnol. 30 771

    [2]

    Dorfman K D 2013 AIChE J. 59 346

    [3]

    Polonsky S, Rossnagel S, Stolovitzky G 2007 Appl. Phys. Lett. 91 153103

    [4]

    Luan B, Peng H, Polonsky S, Rossnagel S, Stolovitzky G, Martyna G 2010 Phys. Rev. Lett. 104 238103

    [5]

    Luan B, Stolovitzky G, Martyna G 2012 Nanoscale 4 1068

    [6]

    Han J, Turner S W, Craighead H G 1999 Phys. Rev. Lett. 83 1688

    [7]

    Han J, Turner S W, Craighead H G 2000 Science 228 1026

    [8]

    Akeson M, Branton D, Kasianowicz J J, Brandin E, Deamer D W 1999 Biophys. J. 77 3227

    [9]

    Lingappa V R, Chaidez J, Yost C S, Hedgepetch J 1984 Proc. Natl. Acad. Sci. USA 81 456

    [10]

    Jung Y, Jeon C, Kim J, Jeong H, Jun S, Ha B Y 2012 Soft Matter 8 2095

    [11]

    Sheng J, Luo K 2012 Phys. Rev. E 86 031803

    [12]

    Li L W, Jin F, He W D, Wu Q 2014 Acta Polym. Sin. 1 1 (in Chinese)[李连伟, 金帆, 何卫东, 吴奇2014高分子学报1 1]

    [13]

    Reisner W, Morton K J, Riehn R, Wang Y M, Yu Z, Rosen M, Sturm J C, Chou S Y, Frey E, Austin R H 2005 Phys. Rev. Lett. 94 196101

    [14]

    Dai L, Jones J J, van der Maarel J R C, Doyle P S 2012 Soft Matter 8 2972

    [15]

    Manneschi C, Angeli E, Ala-Nissila T, Repetto L, Firpo G, Valbusa U 2013 Macromolecules 46 4198

    [16]

    Kalb J, Chakraborty B 2009 J. Chem. Phys. 130 025103

    [17]

    Zhou L W, Liu M B, Chang J Z 2012 Acta Polym. Sin. 7 720 (in Chinese)[周吕文, 刘谋斌, 常建忠2012高分子学报7 720]

    [18]

    Brochard-Wyart F, Tanaka T, Borghi N, de Gennes P G 2005 Langmuir 21 4144

    [19]

    Avramova K, Milchev A 2006 J. Chem. Phys. 124 024909

    [20]

    Chen J Z Y 2007 Phys. Rev. Lett. 98 088302

    [21]

    Caspi Y, Zbaida D, Cohen H, Elbaum M 2009 Macromolecules 42 760

    [22]

    Milchev A, Paul W, Binder K 1994 Macromol. Theory Simul. 3 305

    [23]

    Wang R, Egorov S A, Milchev A, Binder K 2012 Macromolecules 45 2580

    [24]

    Ma S, Ma J, Yang G C 2016 Acta Phys. Sin. 65 148701 (in Chinese)[马姗, 马军, 杨光参2016物理学报65 148701]

    [25]

    Xu S F, Wang J G 2015 Acta Polym. Sin. 3 346 (in Chinese)[许少锋, 汪久根2015高分子学报3 346]

    [26]

    Reisner W, Pedersen J N, Austin R H 2012 Rep. Prog. Phys. 75 106601

    [27]

    Jendrejack R M, Dimalanta E T, Schwartz D C, Graham M D, de Pablo J J 2003 Phys. Rev. Lett. 91 038102

    [28]

    Tang J, Levy S L, Trahan D W, Jones J J, Craighead H G, Doyle P S 2010 Macromolecules 43 7368

    [29]

    Chen Y L 2013 Biomicrofluidics 7 054119

    [30]

    Jun S, Thirumalai D, Ha B Y 2008 Phys. Rev. Lett. 101 138101

    [31]

    Wong C T A, Muthukumar M 2010 J. Chem. Phys. 133 045101

    [32]

    Jiang Y, Liu N, Guo W, Xia F, Jiang L 2012 J. Am. Chem. Soc. 134 15395

    [33]

    Ohshiro T, Umezawa Y 2006 Proc. Natl. Acad. Sci. USA 103 10

    [34]

    Wanunu M, Meller A 2007 Nano Lett. 7 1580

    [35]

    Wei R S, Gatterdam V, Wieneke R, Tampe R, Rant U 2012 Nat. Nanotechnol. 7 257

    [36]

    Tessier F, Labrie J, Slater G W 2002 Macromolecules 35 4791

    [37]

    Panwar A S, Kumar S 2006 Macromolecules 39 1279

    [38]

    Ikonen T 2014 J. Chem. Phys. 140 234906

    [39]

    Milchev A, Klushin L, Skvortsov A, Binder K 2010 Macromolecules 43 6877

  • [1]

    Lam E T, Hastie A, Lin C, Ehrlich D, Das S K, Austin M D, Deshpande P, Cao H, Nagarajan N, Xiao M, Kwok P Y 2012 Nat. Biotechnol. 30 771

    [2]

    Dorfman K D 2013 AIChE J. 59 346

    [3]

    Polonsky S, Rossnagel S, Stolovitzky G 2007 Appl. Phys. Lett. 91 153103

    [4]

    Luan B, Peng H, Polonsky S, Rossnagel S, Stolovitzky G, Martyna G 2010 Phys. Rev. Lett. 104 238103

    [5]

    Luan B, Stolovitzky G, Martyna G 2012 Nanoscale 4 1068

    [6]

    Han J, Turner S W, Craighead H G 1999 Phys. Rev. Lett. 83 1688

    [7]

    Han J, Turner S W, Craighead H G 2000 Science 228 1026

    [8]

    Akeson M, Branton D, Kasianowicz J J, Brandin E, Deamer D W 1999 Biophys. J. 77 3227

    [9]

    Lingappa V R, Chaidez J, Yost C S, Hedgepetch J 1984 Proc. Natl. Acad. Sci. USA 81 456

    [10]

    Jung Y, Jeon C, Kim J, Jeong H, Jun S, Ha B Y 2012 Soft Matter 8 2095

    [11]

    Sheng J, Luo K 2012 Phys. Rev. E 86 031803

    [12]

    Li L W, Jin F, He W D, Wu Q 2014 Acta Polym. Sin. 1 1 (in Chinese)[李连伟, 金帆, 何卫东, 吴奇2014高分子学报1 1]

    [13]

    Reisner W, Morton K J, Riehn R, Wang Y M, Yu Z, Rosen M, Sturm J C, Chou S Y, Frey E, Austin R H 2005 Phys. Rev. Lett. 94 196101

    [14]

    Dai L, Jones J J, van der Maarel J R C, Doyle P S 2012 Soft Matter 8 2972

    [15]

    Manneschi C, Angeli E, Ala-Nissila T, Repetto L, Firpo G, Valbusa U 2013 Macromolecules 46 4198

    [16]

    Kalb J, Chakraborty B 2009 J. Chem. Phys. 130 025103

    [17]

    Zhou L W, Liu M B, Chang J Z 2012 Acta Polym. Sin. 7 720 (in Chinese)[周吕文, 刘谋斌, 常建忠2012高分子学报7 720]

    [18]

    Brochard-Wyart F, Tanaka T, Borghi N, de Gennes P G 2005 Langmuir 21 4144

    [19]

    Avramova K, Milchev A 2006 J. Chem. Phys. 124 024909

    [20]

    Chen J Z Y 2007 Phys. Rev. Lett. 98 088302

    [21]

    Caspi Y, Zbaida D, Cohen H, Elbaum M 2009 Macromolecules 42 760

    [22]

    Milchev A, Paul W, Binder K 1994 Macromol. Theory Simul. 3 305

    [23]

    Wang R, Egorov S A, Milchev A, Binder K 2012 Macromolecules 45 2580

    [24]

    Ma S, Ma J, Yang G C 2016 Acta Phys. Sin. 65 148701 (in Chinese)[马姗, 马军, 杨光参2016物理学报65 148701]

    [25]

    Xu S F, Wang J G 2015 Acta Polym. Sin. 3 346 (in Chinese)[许少锋, 汪久根2015高分子学报3 346]

    [26]

    Reisner W, Pedersen J N, Austin R H 2012 Rep. Prog. Phys. 75 106601

    [27]

    Jendrejack R M, Dimalanta E T, Schwartz D C, Graham M D, de Pablo J J 2003 Phys. Rev. Lett. 91 038102

    [28]

    Tang J, Levy S L, Trahan D W, Jones J J, Craighead H G, Doyle P S 2010 Macromolecules 43 7368

    [29]

    Chen Y L 2013 Biomicrofluidics 7 054119

    [30]

    Jun S, Thirumalai D, Ha B Y 2008 Phys. Rev. Lett. 101 138101

    [31]

    Wong C T A, Muthukumar M 2010 J. Chem. Phys. 133 045101

    [32]

    Jiang Y, Liu N, Guo W, Xia F, Jiang L 2012 J. Am. Chem. Soc. 134 15395

    [33]

    Ohshiro T, Umezawa Y 2006 Proc. Natl. Acad. Sci. USA 103 10

    [34]

    Wanunu M, Meller A 2007 Nano Lett. 7 1580

    [35]

    Wei R S, Gatterdam V, Wieneke R, Tampe R, Rant U 2012 Nat. Nanotechnol. 7 257

    [36]

    Tessier F, Labrie J, Slater G W 2002 Macromolecules 35 4791

    [37]

    Panwar A S, Kumar S 2006 Macromolecules 39 1279

    [38]

    Ikonen T 2014 J. Chem. Phys. 140 234906

    [39]

    Milchev A, Klushin L, Skvortsov A, Binder K 2010 Macromolecules 43 6877

  • [1] Huang Duo-Hui, Wan Ming-Jie, Yang Jun-Sheng. Mmolecular dynamics study of glass transition and nonlinear mechanical behavior of poly(methyl methacrylate)/carbon nanotubes nanocomposites. Acta Physica Sinica, 2021, 70(21): 218101. doi: 10.7498/aps.70.20210752
    [2] Wang Chao, Zhou Yan-Li, Wu Fan, Chen Ying-Cai. Monte Carlo simulation on the adsorption of polymer chains on polymer brushes. Acta Physica Sinica, 2020, 69(16): 168201. doi: 10.7498/aps.69.20200411
    [3] Sun Li-Wang, Li Hong, Wang Peng-Jun, Gao He-Bei, Luo Meng-Bo. Recognition of adsorption phase transition of polymer on surface by neural network. Acta Physica Sinica, 2019, 68(20): 200701. doi: 10.7498/aps.68.20190643
    [4] Zhu Yue, Li Yong-Cheng, Wang Fu-He. First principles study on the H2 diffusion and desorption at the Li-doped MgH2(001) surface. Acta Physica Sinica, 2016, 65(5): 056801. doi: 10.7498/aps.65.056801
    [5] Zheng Hui, Zhang Chong-Hong, Chen Bo, Yang Yi-Tao, Lai Xin-Chun. Inhibition effect of low-temperature pre-irradiation of helium ions on the growth of helium bubble in stainless steel:a Monte Carlo simulation. Acta Physica Sinica, 2014, 63(10): 106102. doi: 10.7498/aps.63.106102
    [6] Zheng Hui, Zhang Chong-Hong, Sun Bo, Yang Yi-Tao, Bai Bin, Song Yin, Lai Xin-Chun. Study on early stage of phase-separation process with low volume ratio using lattice gas model in three dimensions. Acta Physica Sinica, 2013, 62(15): 156401. doi: 10.7498/aps.62.156401
    [7] Zhou Yu-Lu, Li Ren-Shun, Zhang Bao-Ling, Deng Ai-Hong, Hou Qing. Monte Carlo simulations of the evolution of helium depth distribution in materials. Acta Physica Sinica, 2011, 60(6): 060702. doi: 10.7498/aps.60.060702
    [8] Guo Bao-Zeng, Zhang Suo-Liang, Liu Xin. Electron transport property in wurtzite GaN at high electric field with Monte Carlo simulation. Acta Physica Sinica, 2011, 60(6): 068701. doi: 10.7498/aps.60.068701
    [9] Gao Qian, Lou Xiao-Yan, Qi Yang, Shan Wen-Guang. Monte Carlo simulation on the property of ferromagnetic order of Zn1- x Mn x O Nanofilms. Acta Physica Sinica, 2011, 60(3): 036401. doi: 10.7498/aps.60.036401
    [10] Xiang Hui, Liu Da-Huan, Yang Qing-Yuan, Mi Jian-Guo, Zhong Chong-Li. Effect of framework flexibility on diffusion of short alkanes in metal-organic framework. Acta Physica Sinica, 2011, 60(9): 093602. doi: 10.7498/aps.60.093602
    [11] Liu Jian-Cai, Zhang Xin-Ming, Chen Ming-An, Tang Jian-Guo, Liu Sheng-Dan. Simulation of surface segregation of in to Al(001) surface. Acta Physica Sinica, 2010, 59(8): 5641-5645. doi: 10.7498/aps.59.5641
    [12] Yao Wen-Jing, Wang Nan. Monte Carlo simulation of thermophysical properties of Ni-15%Mo alloy melt. Acta Physica Sinica, 2009, 58(6): 4053-4058. doi: 10.7498/aps.58.4053
    [13] Huang Chao-Jun, Liu Ya-Feng, Long Shu-Ming, Sun Yan-Qing, Wu Zhen-Sen. Monte Carlo simulation of transfer-characteristics of electromagnetic wave propagating in soot. Acta Physica Sinica, 2009, 58(4): 2397-2404. doi: 10.7498/aps.58.2397
    [14] Li Mei-Li, Zhang Di, Sun Hong-Ning, Fu Xing-Ye, Yao Xiu-Wei, Li Cong, Duan Yong-Ping, Yan Yuan, Mu Hong-Chen, Sun Min-Hua. Molecular dynamics study of the phase separation and diffusion in Lennard-Jones binary liquid. Acta Physica Sinica, 2008, 57(11): 7157-7163. doi: 10.7498/aps.57.7157
    [15] Xiao Pei, Zhang Zeng-Ming, Sun Xia, Ding Ze-Jun. Monte Carlo simulation of electron transmission through masks in projection electron lithography. Acta Physica Sinica, 2006, 55(11): 5803-5809. doi: 10.7498/aps.55.5803
    [16] Gao Guo-Liang, Qian Chang-Ji, Zhong Rui, Luo Meng-Bo, Ye Gao-Xiang. Monte Carlo simulation of cluster growth on an inhomogeneous substrate. Acta Physica Sinica, 2006, 55(9): 4460-4465. doi: 10.7498/aps.55.4460
    [17] Chang Fu-Xuan, Chen Jin, Huang Wei. Anomalous diffusion and fractional advection-diffusion equation. Acta Physica Sinica, 2005, 54(3): 1113-1117. doi: 10.7498/aps.54.1113
    [18] Tang Xin, Zhang Chao, Zhang Qing-Yu. Study on the influence of three-dimensional Cu(111) islands on the diffusion of adatom by molecular dynamics simulation. Acta Physica Sinica, 2005, 54(12): 5797-5803. doi: 10.7498/aps.54.5797
    [19] Hu Xiao-Jun, Dai Yong-Bing, He Xian-Chang, Shen He-Sheng, Li Rong-Bin. . Acta Physica Sinica, 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
    [20] SHANG YE-CHUN, ZHANG YI-MEN, ZHANG YU-MING. MONTE CARLO SIMULATION OF ELECTRON TRANSPORT IN 6H-SiC. Acta Physica Sinica, 2000, 49(9): 1786-1791. doi: 10.7498/aps.49.1786
Metrics
  • Abstract views:  6409
  • PDF Downloads:  221
  • Cited By: 0
Publishing process
  • Received Date:  06 August 2016
  • Accepted Date:  26 September 2016
  • Published Online:  05 January 2017

/

返回文章
返回