搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮化铀核燃料烧结过程的相场模拟

申文龙 廖宇轩 吴学志 李培 柳文波

引用本文:
Citation:

氮化铀核燃料烧结过程的相场模拟

申文龙, 廖宇轩, 吴学志, 李培, 柳文波

Phase-field Simulation of the Sintering Process of Uranium Nitride Nuclear Fuel

Shen Wen-Long, Liao Yu-Xuan, Wu Xue-Zhi, Li Pei, Liu Wen-Bo
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 本工作构建了基于巨势(Grand potential)的氮化铀烧结相场模型,模型中考虑了物质扩散和烧结颗粒运动,该模型可以扩大界面宽度以增大模拟体系的空间尺度。首先,对所构建模型进行了验证分析,界面平衡后相场变量呈现出对称分布,颗粒的刚体运动机制可以显著促进致密化过程。然后,模拟了不同温度下的双颗粒烧结过程,结果表明烧结颈的增长过程符合幂函数关系,幂指数n的大小为7.14,表明该过程中的主要传质机制为表面扩散。随着烧结温度的升高,烧结颈增长速率加快,晶界内部的空位最大偏析量增加。最后,研究了不同温度下的多颗粒烧结过程,烧结颈之间接触重叠形成复杂的晶界结构,内部孔隙由不规则形状向圆弧形转化。致密化过程中孔隙先是以空位的形式富集在晶界处,再沿晶界传输至外部气相或体积更大的孔隙中。平均孔径先缓慢增加后保持稳定。随着烧结温度由1723 K增加至1873 K,致密化程度不断加深。
    Due to its high thermal conductivity and uranium density, uranium nitride (UN) has great application prospects in various nuclear facilities. However, sintering is an important step during the preparation of UN fuel, and the properties of UN pellets in reactor are significantly affected by sintering parameters. Therefore, using numerical simulation techniques to investigate the sintering mechanism of UN fuel is of great significance. In this work, a phase-field model for the sintering of UN based on the grand potential is established, which simultaneously incorporates the rigid body motion of particles and the mass diffusion. This model enables the expansion of the interface width, thereby increasing the spatial scale of the simulation system. Firstly, a validation analysis of the constructed model is conducted. The phase-field variables exhibit a symmetric distribution at the locally equilibrated interface. The rigid body motion of particles significantly promotes the densification process. Subsequently, the sintering process of two particles is simulated at different temperatures. The results show that the growth of the sintering neck follows a power function relationship with the power exponent n of 7.14, indicating that the dominant mass transfer mechanism is surface diffusion. As the sintering temperature increases, the sintering neck growth accelerates, and the maximum concentration of vacancies within the grain boundary increases. Finally, the multi-particle sintering is investigated at different temperatures. The contact and overlap between sintering necks form a complex grain boundary structure, and the internal pores transform from irregular to circular shapes. During the densification, vacancies originating from pores segregate to grain boundaries and then diffuse to the external gas phase or larger pores. The average pore size initially increases slowly and then remains stable. As the sintering temperature increases from 1723 K to 1873 K, the degree of densification progressively improves.
  • [1]

    Watkins J K, Gonzales A, Wagner A R, Sooby E S, Jaques B J 2021 J. Nucl. Mater. 553 153048

    [2]

    Chen S L, He X J, Yuan C X 2020 Nucl. Sci. Tech. 31 32

    [3]

    Zakova J, Wallenius J 2012 Ann. Nucl. Energy 47 182

    [4]

    Yang K, Kardoulaki E, Zhao D, Broussard A, Metzger K, White J T, Sivack M R, McClellan K J, Lahoda E J, Lian J 2021 J. Nucl. Mater. 557 153272

    [5]

    Tennery V J, Godfrey T G, Potter R A 1971 J. Am. Ceram. Soc. 54 327

    [6]

    Johnson K D, Lopes D A 2018 J. Nucl. Mater. 503 75

    [7]

    Yi M, Wang W X, Xue M, Gong Q H, Xu B X 2023 Arch. Comput. Methods Eng. 30 3325

    [8]

    Zhang Z Q, Fu G C, Wan B, Su Y T, Jiang M G 2021 Microelectron. Reliab. 126 114203

    [9]

    Pimienta P J P, Garboczi E J, Craig Carter W 1992 Comput. Mater. Sci 1 63

    [10]

    Raether F, Seifert G 2018 Adv. Theor. Simul. 1 1800022

    [11]

    Liao Y X, Shen W L, Wu X Z, La Y X, Liu W B 2024 Acta Phys. Sin. 73 7 (in Chinese) [廖宇轩,申文龙,吴学志,喇永孝,柳文波 2024 物理学报 73 7]

    [12]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113

    [13]

    Wang Y U 2006 Acta Mater. 54 953

    [14]

    Deng J 2012 Mater. Trans. 53 385

    [15]

    Ahmed K, Yablinsky C A, Schulte A, Allen T, El-Azab A 2013 Modell. Simul. Mater. Sci. Eng. 21 065005

    [16]

    Choudhury A, Nestler B 2012 Phys. Rev. E 85 021602

    [17]

    Plapp M 2011 Phys. Rev. E 84 031601

    [18]

    Aagesen L K, Gao Y, Schwen D, Ahmed K 2018 Phys. Rev. E 98 023309

    [19]

    Hötzer J, Seiz M, Kellner M, Rheinheimer W, Nestler B 2019 Acta Mater. 164 184

    [20]

    Greenquist I, Tonks M R, Aagesen L K, Zhang Y 2020 Comput. Mater. Sci 172 109288

    [21]

    Greenquist I, Tonks M, Cooper M, Andersson D, Zhang Y 2020 J. Nucl. Mater. 532 152052

    [22]

    Cahn J W, Allen S M 1977 J. de Physique 38 51

    [23]

    Shen W L, Liao Y X, Wu X Z, Jiang Y B, Liu W B Acta Metall. Sin. DOI: 10.11900/0412.1961.2024.00138 (in Chinese) [申文龙,廖宇轩,吴学志,姜彦博,柳文波 金属学报 DOI: 10.11900/0412.1961.2024.00138]

    [24]

    Shi R, Wood M, Heo T W, Wood B C, Ye J 2021 J. Eur. Ceram. Soc. 41 211

    [25]

    Muromura T, Tagawa H 1979 J. Nucl. Mater. 79 264

    [26]

    Yang L, Kaltsoyannis N 2022 J. Nucl. Mater. 566 153803

    [27]

    Qi X Y, Liu W B, He Z B, Wang Y F, Yun D 2023 Acta Metall. Sin. 59 1513 (in Chinese) [戚晓勇,柳文波,何宗倍,王一帆,恽迪 2023 金属学报 59 1513]

    [28]

    Matzke H 1990 J. Chem. Soc., Faraday Trans. 86 1243

    [29]

    Moelans N, Blanpain B, Wollants P 2008 Phys. Rev. B 78 024113

    [30]

    Sun Q M, Shen W L, Liao Y X, Li Y, Wang J J, Liu W B 2025 Rare Metal. Mat. Eng. 54 671 (in Chinese) [孙启明,申文龙,廖宇轩,李昱,王纪钧,柳文波 2025 稀有金属材料与工程 54 671]

    [31]

    German R M (translated by Jia C C, Chu K, Liu B W)2021 Sintering: From Empirical Observations to Scientific Principles (Beijing: Chemical Industry Press) pp165 (in Chinese)[杰曼RM著 (贾成厂,褚克,刘博文等译) 2021 烧结实践与科学原理(北京:化学工业出版社)第165页]

    [32]

    Kuczynski G C 1949 Trans. Am. Inst. Min. Metall. Eng. 185 169

    [33]

    Jiang Y B, Liu W B, Sun Z P, La Y X, Yun D 2022 Acta Phys. Sin. 71 233 (in Chinese) [姜彦博,柳文波,孙志鹏,喇永孝,恽迪 2022 物理学报 71 233]

    [34]

    Watanabe R, Masuda Y 1972 Trans. Jpn. Inst. Met. 13 134

  • [1] 郭常青, 杨乐陶, 王静, 黄厚兵. 弯曲应变梯度作用下铁电三层膜畴翻转的相场模拟研究. 物理学报, doi: 10.7498/aps.74.20250334
    [2] 刘续希, 高士森, 喇永孝, 玉栋梁, 柳文波. Zr-2.5Sn合金高温腐蚀过程的相场模拟. 物理学报, doi: 10.7498/aps.73.20240393
    [3] 廖宇轩, 申文龙, 吴学志, 喇永孝, 柳文波. 陶瓷型复合燃料烧结过程的相场模拟研究. 物理学报, doi: 10.7498/aps.73.20241112
    [4] 姜彦博, 柳文波, 孙志鹏, 喇永孝, 恽迪. 外加应力作用下 UO2 中空洞演化过程的相场模拟. 物理学报, doi: 10.7498/aps.71.20211440
    [5] 黄多辉, 万明杰, 杨俊升. 聚甲基丙烯酸甲酯与碳纳米管纳米复合材料玻璃化转变及其非线性力学行为的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20210752
    [6] 杨朝曦, 柳文波, 张璁雨, 贺新福, 孙正阳, 贾丽霞, 师田田, 恽迪. Fe-Cr合金晶界偏析及辐照加速晶界偏析的相场模拟. 物理学报, doi: 10.7498/aps.70.20201840
    [7] 刘迪, 王静, 王俊升, 黄厚兵. 相场模拟应变调控PbZr(1–x)TixO3薄膜微观畴结构和宏观铁电性能. 物理学报, doi: 10.7498/aps.69.20200310
    [8] 郝刚领, 许巧平, 李先雨, 王伟国. 金属粉末压坯烧结过程的内耗研究. 物理学报, doi: 10.7498/aps.68.20190031
    [9] 王立鹏, 江新标, 吴宏春, 樊慧庆. 氮化铀热中子截面的第一性原理计算. 物理学报, doi: 10.7498/aps.67.20180834
    [10] 王超, 陈英才, 周艳丽, 罗孟波. 两嵌段高分子链在周期管道内扩散的Monte Carlo模拟. 物理学报, doi: 10.7498/aps.66.018201
    [11] 段培培, 邢辉, 陈志, 郝冠华, 王碧涵, 金克新. 镁基合金自由枝晶生长的相场模拟研究. 物理学报, doi: 10.7498/aps.64.060201
    [12] 杜立飞, 张蓉, 邢辉, 张利民, 张洋, 刘林. 横向限制下凝固微观组织演化的相场法模拟. 物理学报, doi: 10.7498/aps.62.106401
    [13] 潘诗琰, 朱鸣芳. 双边扩散枝晶生长的定量相场模型. 物理学报, doi: 10.7498/aps.61.228102
    [14] 刘建才, 张新明, 陈明安, 唐建国, 刘胜胆. In在Al(001)表面偏析的模拟. 物理学报, doi: 10.7498/aps.59.5641
    [15] 王刚, 徐东生, 杨锐. Ti-6Al-4V合金中片层组织形成的相场模拟. 物理学报, doi: 10.7498/aps.58.343
    [16] 胡建民, 信江波, 吕 强, 王月媛, 荣剑英. (Sb2Te3)0.75(1-x)(Bi2Te3)0.25(1-x)(Sb2Se3)x机械合金化粉体的制备及其冷压烧结样品的热电性能研究. 物理学报, doi: 10.7498/aps.55.4843
    [17] 常福宣, 陈 进, 黄 薇. 反常扩散与分数阶对流-扩散方程. 物理学报, doi: 10.7498/aps.54.1113
    [18] 李 正, 何叶青, 胡伯平, 王震西. 烧结Nd-Fe-B中的热力学影响. 物理学报, doi: 10.7498/aps.54.5400
    [19] 王秀英, 孙力玲, 刘日平, 姚玉书, 张 君, 王文魁. 高压下Co在Zr46.75Ti8.25Cu7.5Ni10Be27.5大块金属玻璃过冷液相区中的扩散. 物理学报, doi: 10.7498/aps.53.3845
    [20] 胡晓君, 戴永兵, 何贤昶, 沈荷生, 李荣斌. 空位在金刚石近(001)表面扩散的分子动力学模拟. 物理学报, doi: 10.7498/aps.51.1388
计量
  • 文章访问数:  31
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-18

/

返回文章
返回