Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation study of scaler mode at large high altitude air shower observatory

Huang Zhi-Cheng Zhou Xun-Xiu Huang Dai-Hui Jia Huan-Yu Chen Song-Zhan Ma Xin-Hua Liu Dong AXi Ke-Gu Zhao Bing Chen Lin Wang Pei-Han

Citation:

Simulation study of scaler mode at large high altitude air shower observatory

Huang Zhi-Cheng, Zhou Xun-Xiu, Huang Dai-Hui, Jia Huan-Yu, Chen Song-Zhan, Ma Xin-Hua, Liu Dong, AXi Ke-Gu, Zhao Bing, Chen Lin, Wang Pei-Han
cstr: 32037.14.aps.70.20210632
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • A large high altitude air shower observatory (LHAASO) located at Daocheng in Sichuan province, China, with an altitude up to 4410 m above the sea level, takes the function of hybrid technology to detect cosmic rays. It is composed of three sub-arrays: a 1.3 km2 ground-based particle detector array (KM2A) for γ-ray astronomy and cosmic ray physics, a 78000 m2 water Cherenkov detector array (WCDA) for γ-ray astronomy, and 18 wide field-of-view air Cherenkov/fluorescence telescopes array (WFCTA) for cosmic ray physics. As the major array of LHAASO, KM2A is composed of 5195 electromagnetic particle detectors (EDs, each with 1 m2) and 1188 muon detectors (MDs, each with 36 m2). In the ground-based experiments, there are two common independent data acquisition systems, corresponding to the shower and scaler operation modes. Up to now, the KM2A array operates only in shower mode with the primary energy threshold of about 10 TeV. In the scaler mode, it is not necessary for too many detectors to be hit at the same time. The energy threshold of the experiment can be greatly lowered. In order to learn more about the scaler mode in LHAASO-KM2A, we adopt the CORSIKA 7.5700 to study the cascade processes of extensive air showers in the atmosphere, and employ the G4KM2A (based on Geant4) to simulate the detector responses. The KM2A-ED array is divided into dozens of clusters. For one cluster (composed of 64 EDs), the event rates of showers having a number of fired EDs ≥ 1, 2, 3, 4 (in a time coincidence of 100 ns) are recorded. The average rates of the four multiplicities are ~88 kHz, ~1400 Hz, ~220 Hz, and ~110 Hz, respectively. The particle multiplicities m ≥ 3 are almost completely due to cosmic ray secondary particles. The corresponding primary energies and effective areas are also given in this paper. According to our simulations, the energy threshold of the scaler mode can be lowered to 100 GeV, and the effective areas reach up to ~100 m2. The simulation results in this work are helpful in the online triggering with the scaler mode, and provide information for the subsequent data analysis in LHAASO-KM2A.
      Corresponding author: Zhou Xun-Xiu, zhouxx@swjtu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0404201), the National Natural Science Foundation of China (Grant Nos. U2031101, 11475141, 12047576, U1931108), and the Key Laboratory of Cosmic Ray of Tibet University Ministry of Education, China(Grant No. KLCR-202101)
    [1]

    张潇, 陈阳 2019 现代物理知识 31 9

    Zhang X, Chen Y 2019 Modern Physics 31 9

    [2]

    周勋秀, 胡红波, 黄庆 2009 物理学报 58 5879Google Scholar

    Zhou X X, Hu H B, Huang Q 2009 Acta Phys. Sin. 58 5879Google Scholar

    [3]

    Bartoli B, Bernardini P, Bi X J 2017 Astrophys. J. 842 31Google Scholar

    [4]

    Abeysekara A U, Alfaro R, Alvarez C 2015 Astrophys. J. 800 78Google Scholar

    [5]

    Aharonian F, An Q, Axikegu 2021 Chin. Phys. C 45 025002Google Scholar

    [6]

    Aielli G, Bacci C, Barone F 2009 Astrophys. J. 699 1281Google Scholar

    [7]

    Di Girolamo T 2016 Nucl. Part. Phys. Proc. 279-281 79

    [8]

    Bartoli B, Bernardini P, Bi X J 2015 Astrophys. J. 806 20Google Scholar

    [9]

    Bartoli B, Bernardini P, Bi X J 2015 Phys. Rev. D 91 112017Google Scholar

    [10]

    Bartoli B, Bernardini P, Bi X J 2015 Phys. Rev. D 92 092005Google Scholar

    [11]

    Vernetto S 2000 Astropart. Phys. 13 75

    [12]

    Aielli G, Bacci C, Barone F 2008 Astropart. Phys. 30 85Google Scholar

    [13]

    Di Girolamo T, Vallania P, Vigorito C 2011 Astrophys. Space Sci. 7 239Google Scholar

    [14]

    Bartoli B, Bernardini P, Bi X J 2014 Astrophys. J. 794 82Google Scholar

    [15]

    Dasso S, Asorey H 2012 Adv. Space Res. 49 1563Google Scholar

    [16]

    Bartoli B, Bernardini P, Bi X J 2018 Phys. Rev. D 97 042001Google Scholar

    [17]

    周勋秀, 王新建, 黄代绘, 贾焕玉, 吴超勇 2015 物理学报 64 149202Google Scholar

    Zhou X X, Wang X J, Huang D H, Jia H Y, Wu C Y 2015 Acta Phys. Sin. 64 149202Google Scholar

    [18]

    徐斌, 别业广, 邹丹 2012 空间科学学报 32 501Google Scholar

    Xu B, Bie Y G, Zou D 2012 Chin. J. Space Sci. 32 501Google Scholar

    [19]

    Heck D, Knapp J, Capdevielle J N, Schatz G, Thouw T, https://www.ikp.kit.edu/corsika/70.php [2021-04-08]

    [20]

    陈松战, 赵静, 刘烨, 何会海, 侯超, 李秀荣, 张忠泉, 李骢, 刘佳, 李哲, 王玲玉 2017 核电子学与探测技术 37 1101

    Chen S Z, Zhao J, Liu Y, He H H, Hou C, Li X R, Zhang Z Q, Li C, Liu J, Li Z, Wang L Y 2017 Nuclear Electronics & Detection Technology 37 1101

    [21]

    卢晓旭, 顾旻皓, 朱科军, 李飞 2020 核技术 43 80

    Lu X X, Gu M H, Zhu K J, Li F 2020 Nuclear Techniques 43 80

    [22]

    He H H 2018 Radiation Detection Technology and Methods 2 1Google Scholar

    [23]

    曹臻, 陈明君, 陈松战 2019 天文学报 60 19

    Cao Z, Chen M J, Chen S Z 2019 Acta Astronomica Sinica 60 19

    [24]

    Cao Z, Chen M J, Chen S Z 2019 Chin. Astron. Astrophys. 43 457Google Scholar

    [25]

    Jin C, Chen S Z, He H H 2020 Chin. Phys. C 44 065002Google Scholar

    [26]

    Zhang Z Q, Hou C, Cao Z 2017 Nucl. Instrum. Methods A 845 429Google Scholar

    [27]

    Allison J, Amako K, Apostolakis J 2016 Nucl. Instrum. Methods A 835 186Google Scholar

    [28]

    Aguilar M, Aisa D, Alpat B 2015 Phys. Rev. Lett. 114 171103Google Scholar

    [29]

    Aguilar M, Aisa D, Alpat B 2015 Phys. Rev. Lett. 115 211101

    [30]

    Aharonian F, An Q, Axikegu 2021 Nucl. Instrum. Methods A 1001 165193Google Scholar

    [31]

    Zhou X X, Gao L L, Zhang Y, Guo Y Q, Zhu Q Q, Jia H Y, Huang D H 2016 Chin. Phys. C 40 075001Google Scholar

    [32]

    Vallania P, Girolamo T Di, Vigorito C 2006 Proceedings of the 20th European Cosmic Ray Symposium, Lisbon, Portugal, September 5–8, 2006 p5

  • 图 1  KM2A-ED阵列(左)和scaler模式中cluster的ED布局图(右)

    Figure 1.  Layout diagram of KM2A-ED array (left) and the cluster in scaler mode (right).

    图 2  经过1个ED探测器响应后宇宙线计数率分布的模拟结果

    Figure 2.  Event rate distribution for one ED.

    图 3  Scaler模式中多重数 m ≥ 1, 2, 3和4的计数率分布

    Figure 3.  Event rate distribution with m ≥ 1, 2, 3 and 4 in scaler mode.

    图 4  Scaler 模式中不同多重数时有效面积随原初能量的分布 (a)质子; (b)氦

    Figure 4.  The Aeff as a function of the primary energy in scaler mode: (a) Proton; (b) Helium.

    图 5  Scaler模式中不同多重数时有效面积随天顶角的分布 (a)质子; (b)氦

    Figure 5.  The Aeff as a function of the zenith angle in scaler mode: (a) Proton; (b) Helium.

    图 6  Scaler 模式中不同多重数时探测到的原初质子能量分布

    Figure 6.  Energy distribution for primary Proton in scaler mode.

    图 7  Scaler 模式中不同多重数时探测到的原初氦能量分布

    Figure 7.  Energy distribution for primary Helium in scaler mode.

    表 1  Scaler模式中不同多重数时的平均计数率和宇宙线贡献率

    Table 1.  Average rates and the contribution of cosmic rays in scaler mode.

    多重数(m) ≥ 1 ≥ 2 ≥ 3 ≥ 4
    平均计数率88 kHz1400 Hz220 Hz110 Hz
    宇宙线贡献率42.3%62.3%96.9%99.7%
    DownLoad: CSV

    表 2  Scaler模式中探测原初质子和氦的平均有效面积

    Table 2.  Average effective area for primary Proton and Helium in scaler mode.

    多重数(m)Proton: $ \langle $Aeff$ \rangle $ /m2Helium: $ \langle $Aeff$ \rangle $ /m2
    ≥ 1129.6973.07
    ≥ 22.380.91
    ≥ 30.670.49
    ≥ 40.340.27
    DownLoad: CSV

    表 3  Scaler模式中探测原初质子和氦的平均能量

    Table 3.  Average energy of primary Proton and Helium in scaler mode.

    多重数(m)Proton $ \langle $E$ \rangle $/GeVHelium $ \langle $E$ \rangle $/GeV
    ≥ 193.8236.0
    ≥ 21.4 × 1035.4 × 103
    ≥ 36.3 × 1031.4 × 104
    ≥ 49.5 × 1031.9 × 104
    DownLoad: CSV
  • [1]

    张潇, 陈阳 2019 现代物理知识 31 9

    Zhang X, Chen Y 2019 Modern Physics 31 9

    [2]

    周勋秀, 胡红波, 黄庆 2009 物理学报 58 5879Google Scholar

    Zhou X X, Hu H B, Huang Q 2009 Acta Phys. Sin. 58 5879Google Scholar

    [3]

    Bartoli B, Bernardini P, Bi X J 2017 Astrophys. J. 842 31Google Scholar

    [4]

    Abeysekara A U, Alfaro R, Alvarez C 2015 Astrophys. J. 800 78Google Scholar

    [5]

    Aharonian F, An Q, Axikegu 2021 Chin. Phys. C 45 025002Google Scholar

    [6]

    Aielli G, Bacci C, Barone F 2009 Astrophys. J. 699 1281Google Scholar

    [7]

    Di Girolamo T 2016 Nucl. Part. Phys. Proc. 279-281 79

    [8]

    Bartoli B, Bernardini P, Bi X J 2015 Astrophys. J. 806 20Google Scholar

    [9]

    Bartoli B, Bernardini P, Bi X J 2015 Phys. Rev. D 91 112017Google Scholar

    [10]

    Bartoli B, Bernardini P, Bi X J 2015 Phys. Rev. D 92 092005Google Scholar

    [11]

    Vernetto S 2000 Astropart. Phys. 13 75

    [12]

    Aielli G, Bacci C, Barone F 2008 Astropart. Phys. 30 85Google Scholar

    [13]

    Di Girolamo T, Vallania P, Vigorito C 2011 Astrophys. Space Sci. 7 239Google Scholar

    [14]

    Bartoli B, Bernardini P, Bi X J 2014 Astrophys. J. 794 82Google Scholar

    [15]

    Dasso S, Asorey H 2012 Adv. Space Res. 49 1563Google Scholar

    [16]

    Bartoli B, Bernardini P, Bi X J 2018 Phys. Rev. D 97 042001Google Scholar

    [17]

    周勋秀, 王新建, 黄代绘, 贾焕玉, 吴超勇 2015 物理学报 64 149202Google Scholar

    Zhou X X, Wang X J, Huang D H, Jia H Y, Wu C Y 2015 Acta Phys. Sin. 64 149202Google Scholar

    [18]

    徐斌, 别业广, 邹丹 2012 空间科学学报 32 501Google Scholar

    Xu B, Bie Y G, Zou D 2012 Chin. J. Space Sci. 32 501Google Scholar

    [19]

    Heck D, Knapp J, Capdevielle J N, Schatz G, Thouw T, https://www.ikp.kit.edu/corsika/70.php [2021-04-08]

    [20]

    陈松战, 赵静, 刘烨, 何会海, 侯超, 李秀荣, 张忠泉, 李骢, 刘佳, 李哲, 王玲玉 2017 核电子学与探测技术 37 1101

    Chen S Z, Zhao J, Liu Y, He H H, Hou C, Li X R, Zhang Z Q, Li C, Liu J, Li Z, Wang L Y 2017 Nuclear Electronics & Detection Technology 37 1101

    [21]

    卢晓旭, 顾旻皓, 朱科军, 李飞 2020 核技术 43 80

    Lu X X, Gu M H, Zhu K J, Li F 2020 Nuclear Techniques 43 80

    [22]

    He H H 2018 Radiation Detection Technology and Methods 2 1Google Scholar

    [23]

    曹臻, 陈明君, 陈松战 2019 天文学报 60 19

    Cao Z, Chen M J, Chen S Z 2019 Acta Astronomica Sinica 60 19

    [24]

    Cao Z, Chen M J, Chen S Z 2019 Chin. Astron. Astrophys. 43 457Google Scholar

    [25]

    Jin C, Chen S Z, He H H 2020 Chin. Phys. C 44 065002Google Scholar

    [26]

    Zhang Z Q, Hou C, Cao Z 2017 Nucl. Instrum. Methods A 845 429Google Scholar

    [27]

    Allison J, Amako K, Apostolakis J 2016 Nucl. Instrum. Methods A 835 186Google Scholar

    [28]

    Aguilar M, Aisa D, Alpat B 2015 Phys. Rev. Lett. 114 171103Google Scholar

    [29]

    Aguilar M, Aisa D, Alpat B 2015 Phys. Rev. Lett. 115 211101

    [30]

    Aharonian F, An Q, Axikegu 2021 Nucl. Instrum. Methods A 1001 165193Google Scholar

    [31]

    Zhou X X, Gao L L, Zhang Y, Guo Y Q, Zhu Q Q, Jia H Y, Huang D H 2016 Chin. Phys. C 40 075001Google Scholar

    [32]

    Vallania P, Girolamo T Di, Vigorito C 2006 Proceedings of the 20th European Cosmic Ray Symposium, Lisbon, Portugal, September 5–8, 2006 p5

Metrics
  • Abstract views:  7742
  • PDF Downloads:  78
  • Cited By: 0
Publishing process
  • Received Date:  05 April 2021
  • Accepted Date:  20 May 2021
  • Available Online:  26 September 2021
  • Published Online:  05 October 2021
  • /

    返回文章
    返回