Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of thunderstorms electric field on secondary photons of cosmic ray at large high altitude air shower observatory

Axikegu Zhou Xun-Xiu Zhang Yun-Feng

Citation:

Effects of thunderstorms electric field on secondary photons of cosmic ray at large high altitude air shower observatory

Axikegu, Zhou Xun-Xiu, Zhang Yun-Feng
PDF
HTML
Get Citation
  • Large high altitude air shower observatory (LHAASO) is a complex of extensive air shower (EAS) detector arrays, located on the Mt. Haizi (29°21' N, 100°08' E) at an altitude of 4410 m a. s. l., Daocheng, Sichuan Province, China. The information about primary cosmic rays can be obtained by using data from secondary particles measured at LHAASO, with photons make up the majority among these secondary particles. During thunderstorms, the atmospheric electric field can affect secondary charged particles (mainly positrons and electrons), thus changing the information of photons on the ground. In this work, Monte Carlo simulations are performed to investigate the effects of near-ground thunderstorm electric fields on cosmic ray secondary photons at LHAASO. A simple model with a vertical and uniform atmospheric electric field in a layer of atmosphere is used in our simulations. During thunderstorms, the number and energy of photons are found to significantly change and strongly depend on the electric field strength. In a field of –1000 V/cm (below the threshold of the relativistic runaway electron avalanche (RREA) process), the number of photons is increased by 23%. Also, the spectrum of photons softens, and the increased number of photons with energy less than 2 MeV exceeds 29%. In an electric field of –1700 V/cm (above the threshold of the RREA process), the number of photons experiences exponential growth, with an increase of 279%. The spectrum of photons becomes softer than that at –1000 V/cm, and the increased number with energy less than 2 MeV is more than 361%. It is consistent with the theory of RREA. For these phenomena of photons at LHAASO, the main factor is that the number of positrons and electrons are increased due to the acceleration of negative electric field on electrons, with increase of 65% in –1000 V/cm and 992% in –1700 V/cm, and the spectrum of positrons and electrons soften. Newborn free positrons/electrons may undergo bremsstrahlung and deposit part of their energy into photons, causing the change of number and energy of photons to follow roughly the same pattern as positrons and electrons. The simulation results can provide the information for understanding the variations of the data detected by LHAASO during thunderstorms and the acceleration mechanisms of secondary charged particles caused by an atmospheric electric field.
      Corresponding author: Axikegu, axkg@my.swjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12375102, U2031101) and the Solar Energy Integration Technology Popularization and Application Key Laboratory of Sichuan Province, China (Grant No. TYNSYS-2023-Y-04).
    [1]

    Qie X S, Yuan S F, Chen Z X, et al. 2021 Sci. China Earth Sci. 64 10Google Scholar

    [2]

    刘冬霞, 郄秀书, 王志超, 吴学珂, 潘伦湘 2013 物理学报 62 219201Google Scholar

    Liu D X, Qie X S, Wang Z C, Wu X K, Pan L X 2013 Acta Phys. Sin. 62 219201Google Scholar

    [3]

    周勋秀, 王新建, 黄代绘, 贾焕玉, 吴超勇 2015 物理学报 64 149202Google Scholar

    Zhou X X, Wang X J, Huang D H, Jia H Y, Wu C Y 2015 Acta Phys. Sin. 64 149202Google Scholar

    [4]

    Tsuchiya H, Enoto T, Torii T, et al. 2009 Phys. Rev. Lett. 102 255003Google Scholar

    [5]

    Hariharan B, Chandra A, Dugad S R, et al. 2019 Phys. Rev. Lett. 122 105101Google Scholar

    [6]

    Wilson C T R 1924 Proc. Phys. Soc. London 37 32DGoogle Scholar

    [7]

    Gurevich A V, Milikh G M 1992 Phys. Lett. A 165 463Google Scholar

    [8]

    Dwyer J R 2003 Res. Lett. 30 2055Google Scholar

    [9]

    Symbalisty E M D, Roussel-Dupre R A, Yukhimuk V A 1998 IEEE Trans. Plasma Sci. 26 1575Google Scholar

    [10]

    Alexeenko V V, Chernyaev A B, Chudakov A E, et a1. 1985 Proceeding of 19th International Cosmic Ray Conference. (La Jolla. USA: International Union of Pure and Applied Physics) pp352−355

    [11]

    Alexeenko V V, Khaerdinov N S, Lidvansky A S, Petkov V B 2002 Phys. Lett. A 301 299Google Scholar

    [12]

    Bartoli B, Bernardini P, Bi X J, et al. 2018 Phys. Rev. D 97 042001Google Scholar

    [13]

    Xu B, Bie Y G, Zhou D 2012 Chin. J. Space Sci. 32 501 (in Chinses) [徐斌, 别业广, 邹丹 2012 空间科学学报 32 501]Google Scholar

    Xu B, Bie Y G, Zhou D 2012 Chin. J. Space Sci. 32 501 (in Chinses)Google Scholar

    [14]

    Chilingarian A, Mailyan B, Vanyan L 2012 Atmos. Res. 114-115 1Google Scholar

    [15]

    Lindy N C, Benton E R, Beasley W H, et al. 2018 J. Atmos. Solar-Terr. Phys. 179 435Google Scholar

    [16]

    Yan R R, Huang D H, Zhao B, Axi K G, Zhou X X 2020 Chin. Astron. Astr. 44 146Google Scholar

    [17]

    He H H, Zhang Y 2003 HEPNP 27 1106 (in Chinses) [何会海, 张勇 2003 高能物理与核物理 27 1106]Google Scholar

    He H H, Zhang Y 2003 HEPNP 27 1106 (in Chinses)Google Scholar

    [18]

    Axikegu, Bartoli B, Bernardini P, et al. 2022 Phys. Rev. D 106 022008Google Scholar

    [19]

    Grieder P K F 2010 Extensive Air Showers (Berlin: Springer

    [20]

    Fishman G F, Bhat P N, Mallozzi R, et al. 1994 Science 264 1313Google Scholar

    [21]

    Smith D M, Lopez L I, Lin R P, et al. 2005 Science 307 1085Google Scholar

    [22]

    Briggs M S, Fishman G J, Connaughton V, et al. 2010 J. Geophys. Res. 115 A07323Google Scholar

    [23]

    Tavani M, Marisaldi M, Labanti C, et al. 2011 Phys. Rev. Lett. 106 018501Google Scholar

    [24]

    Neubert T, Østgaard N, Reglero V, et al. 2020 Science 367 183Google Scholar

    [25]

    Yoshida S, Morimoto T, Ushio T, et al. 2008 Geophys. Res. Lett. 35 L10804Google Scholar

    [26]

    Abbasi R U, Abu-Zayyad T, Allen M, et al. 2018 J. Geophys. Res. Atmos. 123 6864Google Scholar

    [27]

    Wada Y, Enoto T, Nakazawa K, et al. 2019 Phys. Rev. Lett. 123 061103Google Scholar

    [28]

    Köhn C, Diniz G, Harakeh M N 2017 J. Geophys. Res. Atmos. 122 1365Google Scholar

    [29]

    McCarthy M P, Parks G K 1985 Geophys. Res. Lett. 12 393Google Scholar

    [30]

    Eack K B, Beasley W H, David R W, et al. 1996 J. Geophys. Res. 101 29637Google Scholar

    [31]

    Chilingarian A, Daryan A, Arakelyan A K, et al. 2021 Phys. Rev. D 82 043009Google Scholar

    [32]

    Torii T, Sugita T, Tanabe S, et al. 2009 Geophys. Res. Lett. 36 L13804Google Scholar

    [33]

    Torii T, Takeishi M, Hosono T 2002 J. Geophys. Res. 107 4324Google Scholar

    [34]

    Tsuchiya H, Enoto T, Yamada S, et al. 2007 Phys. Rev. Lett. 99 165002Google Scholar

    [35]

    Aharonian F, An Q, Axikegu, et al. 2023 Chin. Phys. C 47 015001Google Scholar

    [36]

    Cao Z, Aharonian F, An Q, et al. 2021 Science 373 425Google Scholar

    [37]

    Ma X H, Bi Y J, Chao Z, et al. 2022 Chin. Phys. C 46 030001Google Scholar

    [38]

    陈松战, 赵静, 刘烨, 等 2017 核电子学与探测技术 37 1101Google Scholar

    Chen S Z, Zhan J, Liu Y, et al. 2017 Nucl. Electron. Detect. Technol. 37 1101Google Scholar

    [39]

    Aharonian F, An Q, Axikegu, et al. 2021 Chin. Phys. C 45 085002Google Scholar

    [40]

    Heck D, Knapp J, Capdevielle J N, et al. 1998 CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers Wissenschaftliche Berichte, FZKA-6019

    [41]

    周勋秀, 王新建, 黄代绘, 贾焕玉 2016 空间科学学报 36 49Google Scholar

    Zhou X X, Wang X J, Huang D H, Jia H Y 2016 Chin. J. Space Sci. 36 49Google Scholar

    [42]

    NOAA national centers for environmental information, Magnetic Field Calculators: IGRF model 562 (1590-2024) https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml#igrfwmm

    [43]

    Marshall T C, Stolzenburg M, Maggio C R, et al. 2005 Geophys. Res. Lett. 32 L03813Google Scholar

    [44]

    Chilingarian A, Hovsepyan G, Soghomonyan S, Zazyan M, Zelenyy M 2018 Phys. Rev. D 98 082001Google Scholar

    [45]

    Axi K G, Zhou X X, Huang Z C, et al. 2022 Astrophys. Space Sci. 367 30Google Scholar

    [46]

    Chum J, Langer R, Baše J, et al. 2020 Earth Planets Space 72 28Google Scholar

    [47]

    Michimoto K J 1993 Atmos. Electr. 13 33Google Scholar

    [48]

    Dorman L I, Dorman I V, Iucci N, et al. 2003 J. Geophys. Res. 108 1181Google Scholar

    [49]

    Bethe H A 1930 Annalen Phys. 5 325Google Scholar

    [50]

    Buitink S, Huege T, Falcke H, Heck D, Kuijpers J 2010 Astropart. Phys. 33 1Google Scholar

  • 图 1  不加电场时光子和电子的数目(a)和比值(b)随大气深度的变化

    Figure 1.  The number of photons and electrons/positrons (a) and their ratios (b) as a function of atmospheric depth in absence of a field.

    图 2  在–1700 V/cm的电场中, 电子和光子的数目随大气深度的变化(电场面积: 524—599 g/cm2)

    Figure 2.  The number of electrons/positrons and photons as a function of atmospheric depth in a field of –1700 V/cm (electric field area: 524–599 g/cm2).

    图 3  在–1700 V/cm的电场中, 电子和光子的数目变化百分比随大气深度的变化(电场面积: 524—599 g/cm2)

    Figure 3.  Percent change of electrons/positrons and photons as a function of atmospheric depth in a field of –1700 V/cm (electric field area: 524–599 g/cm2).

    图 4  在–1000 V/cm的电场中, 电子和光子的数目随大气深度的变化(电场面积: 524—599 g/cm2)

    Figure 4.  The number of electrons/positrons and photons as a function of atmospheric depth in a field of –1000 V/cm (electric field area: 524–599 g/cm2).

    图 5  在–1000 V/cm的电场中, 电子和光子数目的变化(a)及变化百分比(b)随大气深度的变化(电场面积: 524—599 g/cm2)

    Figure 5.  Change (a) and percent change (b) of electrons/positrons and photons number as a function of atmospheric depth in a field of –1000 V/cm (electric field area: 524–599 g/cm2).

    图 6  (a)不加电场时电子和光子数目随能量的变化; (b)归一化后的结果

    Figure 6.  The number (a) and normalized number (b) of electrons/positrons and photons as a function of energy in absence of a field.

    图 7  (a)不同电场中电子和光子数目随能量的分布; (b) –1700 V/cm的电场中, 能量低于m的新增电子和光子数目与新增总电子和总光子数目之比随能量的变化

    Figure 7.  (a) The number of electrons/positrons and photons as a function of energy in absence of a field and in a field of –1700 V/cm; (b) the ratios of increasing number with energy less than m to total number as a function of energy in a field of –1700 V/cm.

    图 8  在–1700 V/cm的电场中, 电子和光子的数目变化百分比随能量的变化

    Figure 8.  Percent change of electrons/positrons and photons as a function of energy in a field of –1700 V/cm.

    图 9  不同电场中电子和光子数目随能量的分布

    Figure 9.  The number of electrons/positrons and photons as a function of energy in absence of a field and in a field of –1000 V/cm.

    图 10  在–1000 V/cm电场中, 电子和光子数目变化百分比随能量的变化

    Figure 10.  Percent change of electrons/positrons and photons as a function of energy in a field of –1000 V/cm.

    图 11  在–1000 V/cm电场中, 电子和光子数目积分变化百分比随能量的变化

    Figure 11.  Integral percent change of electrons/positrons and photons as a function of energy in a field of –1000 V/cm.

  • [1]

    Qie X S, Yuan S F, Chen Z X, et al. 2021 Sci. China Earth Sci. 64 10Google Scholar

    [2]

    刘冬霞, 郄秀书, 王志超, 吴学珂, 潘伦湘 2013 物理学报 62 219201Google Scholar

    Liu D X, Qie X S, Wang Z C, Wu X K, Pan L X 2013 Acta Phys. Sin. 62 219201Google Scholar

    [3]

    周勋秀, 王新建, 黄代绘, 贾焕玉, 吴超勇 2015 物理学报 64 149202Google Scholar

    Zhou X X, Wang X J, Huang D H, Jia H Y, Wu C Y 2015 Acta Phys. Sin. 64 149202Google Scholar

    [4]

    Tsuchiya H, Enoto T, Torii T, et al. 2009 Phys. Rev. Lett. 102 255003Google Scholar

    [5]

    Hariharan B, Chandra A, Dugad S R, et al. 2019 Phys. Rev. Lett. 122 105101Google Scholar

    [6]

    Wilson C T R 1924 Proc. Phys. Soc. London 37 32DGoogle Scholar

    [7]

    Gurevich A V, Milikh G M 1992 Phys. Lett. A 165 463Google Scholar

    [8]

    Dwyer J R 2003 Res. Lett. 30 2055Google Scholar

    [9]

    Symbalisty E M D, Roussel-Dupre R A, Yukhimuk V A 1998 IEEE Trans. Plasma Sci. 26 1575Google Scholar

    [10]

    Alexeenko V V, Chernyaev A B, Chudakov A E, et a1. 1985 Proceeding of 19th International Cosmic Ray Conference. (La Jolla. USA: International Union of Pure and Applied Physics) pp352−355

    [11]

    Alexeenko V V, Khaerdinov N S, Lidvansky A S, Petkov V B 2002 Phys. Lett. A 301 299Google Scholar

    [12]

    Bartoli B, Bernardini P, Bi X J, et al. 2018 Phys. Rev. D 97 042001Google Scholar

    [13]

    Xu B, Bie Y G, Zhou D 2012 Chin. J. Space Sci. 32 501 (in Chinses) [徐斌, 别业广, 邹丹 2012 空间科学学报 32 501]Google Scholar

    Xu B, Bie Y G, Zhou D 2012 Chin. J. Space Sci. 32 501 (in Chinses)Google Scholar

    [14]

    Chilingarian A, Mailyan B, Vanyan L 2012 Atmos. Res. 114-115 1Google Scholar

    [15]

    Lindy N C, Benton E R, Beasley W H, et al. 2018 J. Atmos. Solar-Terr. Phys. 179 435Google Scholar

    [16]

    Yan R R, Huang D H, Zhao B, Axi K G, Zhou X X 2020 Chin. Astron. Astr. 44 146Google Scholar

    [17]

    He H H, Zhang Y 2003 HEPNP 27 1106 (in Chinses) [何会海, 张勇 2003 高能物理与核物理 27 1106]Google Scholar

    He H H, Zhang Y 2003 HEPNP 27 1106 (in Chinses)Google Scholar

    [18]

    Axikegu, Bartoli B, Bernardini P, et al. 2022 Phys. Rev. D 106 022008Google Scholar

    [19]

    Grieder P K F 2010 Extensive Air Showers (Berlin: Springer

    [20]

    Fishman G F, Bhat P N, Mallozzi R, et al. 1994 Science 264 1313Google Scholar

    [21]

    Smith D M, Lopez L I, Lin R P, et al. 2005 Science 307 1085Google Scholar

    [22]

    Briggs M S, Fishman G J, Connaughton V, et al. 2010 J. Geophys. Res. 115 A07323Google Scholar

    [23]

    Tavani M, Marisaldi M, Labanti C, et al. 2011 Phys. Rev. Lett. 106 018501Google Scholar

    [24]

    Neubert T, Østgaard N, Reglero V, et al. 2020 Science 367 183Google Scholar

    [25]

    Yoshida S, Morimoto T, Ushio T, et al. 2008 Geophys. Res. Lett. 35 L10804Google Scholar

    [26]

    Abbasi R U, Abu-Zayyad T, Allen M, et al. 2018 J. Geophys. Res. Atmos. 123 6864Google Scholar

    [27]

    Wada Y, Enoto T, Nakazawa K, et al. 2019 Phys. Rev. Lett. 123 061103Google Scholar

    [28]

    Köhn C, Diniz G, Harakeh M N 2017 J. Geophys. Res. Atmos. 122 1365Google Scholar

    [29]

    McCarthy M P, Parks G K 1985 Geophys. Res. Lett. 12 393Google Scholar

    [30]

    Eack K B, Beasley W H, David R W, et al. 1996 J. Geophys. Res. 101 29637Google Scholar

    [31]

    Chilingarian A, Daryan A, Arakelyan A K, et al. 2021 Phys. Rev. D 82 043009Google Scholar

    [32]

    Torii T, Sugita T, Tanabe S, et al. 2009 Geophys. Res. Lett. 36 L13804Google Scholar

    [33]

    Torii T, Takeishi M, Hosono T 2002 J. Geophys. Res. 107 4324Google Scholar

    [34]

    Tsuchiya H, Enoto T, Yamada S, et al. 2007 Phys. Rev. Lett. 99 165002Google Scholar

    [35]

    Aharonian F, An Q, Axikegu, et al. 2023 Chin. Phys. C 47 015001Google Scholar

    [36]

    Cao Z, Aharonian F, An Q, et al. 2021 Science 373 425Google Scholar

    [37]

    Ma X H, Bi Y J, Chao Z, et al. 2022 Chin. Phys. C 46 030001Google Scholar

    [38]

    陈松战, 赵静, 刘烨, 等 2017 核电子学与探测技术 37 1101Google Scholar

    Chen S Z, Zhan J, Liu Y, et al. 2017 Nucl. Electron. Detect. Technol. 37 1101Google Scholar

    [39]

    Aharonian F, An Q, Axikegu, et al. 2021 Chin. Phys. C 45 085002Google Scholar

    [40]

    Heck D, Knapp J, Capdevielle J N, et al. 1998 CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers Wissenschaftliche Berichte, FZKA-6019

    [41]

    周勋秀, 王新建, 黄代绘, 贾焕玉 2016 空间科学学报 36 49Google Scholar

    Zhou X X, Wang X J, Huang D H, Jia H Y 2016 Chin. J. Space Sci. 36 49Google Scholar

    [42]

    NOAA national centers for environmental information, Magnetic Field Calculators: IGRF model 562 (1590-2024) https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml#igrfwmm

    [43]

    Marshall T C, Stolzenburg M, Maggio C R, et al. 2005 Geophys. Res. Lett. 32 L03813Google Scholar

    [44]

    Chilingarian A, Hovsepyan G, Soghomonyan S, Zazyan M, Zelenyy M 2018 Phys. Rev. D 98 082001Google Scholar

    [45]

    Axi K G, Zhou X X, Huang Z C, et al. 2022 Astrophys. Space Sci. 367 30Google Scholar

    [46]

    Chum J, Langer R, Baše J, et al. 2020 Earth Planets Space 72 28Google Scholar

    [47]

    Michimoto K J 1993 Atmos. Electr. 13 33Google Scholar

    [48]

    Dorman L I, Dorman I V, Iucci N, et al. 2003 J. Geophys. Res. 108 1181Google Scholar

    [49]

    Bethe H A 1930 Annalen Phys. 5 325Google Scholar

    [50]

    Buitink S, Huege T, Falcke H, Heck D, Kuijpers J 2010 Astropart. Phys. 33 1Google Scholar

  • [1] Huang Zhi-Cheng, Zhou Xun-Xiu, Huang Dai-Hui, Jia Huan-Yu, Chen Song-Zhan, Ma Xin-Hua, Liu Dong, AXi Ke-Gu, Zhao Bing, Chen Lin, Wang Pei-Han. Simulation study of scaler mode at large high altitude air shower observatory. Acta Physica Sinica, 2021, 70(19): 199301. doi: 10.7498/aps.70.20210632
    [2] Wang Chao, Zhou Yan-Li, Wu Fan, Chen Ying-Cai. Monte Carlo simulation on the adsorption of polymer chains on polymer brushes. Acta Physica Sinica, 2020, 69(16): 168201. doi: 10.7498/aps.69.20200411
    [3] Wang Chao, Chen Ying-Cai, Zhou Yan-Li, Luo Meng-Bo. Diffusion of diblock copolymer in periodical channels:a Monte Carlo simulation study. Acta Physica Sinica, 2017, 66(1): 018201. doi: 10.7498/aps.66.018201
    [4] Lu Chang-Bing, Xu Peng, Bao Jie, Wang Zhao-Hui, Zhang Kai, Ren Jie, Liu Yan-Feng. Simulation analysis and experimental verification of fast neutron radiography. Acta Physica Sinica, 2015, 64(19): 198702. doi: 10.7498/aps.64.198702
    [5] Zhou Xun-Xiu, Wang Xin-Jian, Huang Dai-Hui, Jia Huan-Yu, Wu Chao-Yong. Simulation study on the correlation between the ground cosmic rays and the near earth thunderstorms electric field at Yangbajing (Tibet China). Acta Physica Sinica, 2015, 64(14): 149202. doi: 10.7498/aps.64.149202
    [6] Zheng Hui, Zhang Chong-Hong, Chen Bo, Yang Yi-Tao, Lai Xin-Chun. Inhibition effect of low-temperature pre-irradiation of helium ions on the growth of helium bubble in stainless steel:a Monte Carlo simulation. Acta Physica Sinica, 2014, 63(10): 106102. doi: 10.7498/aps.63.106102
    [7] Zhou Yu-Lu, Li Ren-Shun, Zhang Bao-Ling, Deng Ai-Hong, Hou Qing. Monte Carlo simulations of the evolution of helium depth distribution in materials. Acta Physica Sinica, 2011, 60(6): 060702. doi: 10.7498/aps.60.060702
    [8] Guo Bao-Zeng, Zhang Suo-Liang, Liu Xin. Electron transport property in wurtzite GaN at high electric field with Monte Carlo simulation. Acta Physica Sinica, 2011, 60(6): 068701. doi: 10.7498/aps.60.068701
    [9] Gao Qian, Lou Xiao-Yan, Qi Yang, Shan Wen-Guang. Monte Carlo simulation on the property of ferromagnetic order of Zn1- x Mn x O Nanofilms. Acta Physica Sinica, 2011, 60(3): 036401. doi: 10.7498/aps.60.036401
    [10] Ding Xue-Cheng, Fu Guang-Sheng, Liang Wei-Hua, Chu Li-Zhi, Deng Ze-Chao, Wang Ying-Long. Influence of the initial ablated-particle density on distribution of density and velocity of ablated-particles. Acta Physica Sinica, 2010, 59(5): 3331-3335. doi: 10.7498/aps.59.3331
    [11] Zhang Fa-Qiang, Yang Jian-Lun, Li Zheng-Hong, Ye Fan, Xu Rong-Kun. Effects of secondary neutrons on fast-neutron image quality in thick scintillator. Acta Physica Sinica, 2009, 58(2): 1316-1320. doi: 10.7498/aps.58.1316
    [12] Yao Wen-Jing, Wang Nan. Monte Carlo simulation of thermophysical properties of Ni-15%Mo alloy melt. Acta Physica Sinica, 2009, 58(6): 4053-4058. doi: 10.7498/aps.58.4053
    [13] Huang Chao-Jun, Liu Ya-Feng, Long Shu-Ming, Sun Yan-Qing, Wu Zhen-Sen. Monte Carlo simulation of transfer-characteristics of electromagnetic wave propagating in soot. Acta Physica Sinica, 2009, 58(4): 2397-2404. doi: 10.7498/aps.58.2397
    [14] Tian Jin-Shou, Zhao Bao-Sheng, Wu Jian-Jun, Zhao Wei, Liu Yun-Quan, Zhang Jie. Theoretical calculation of the modulation transfer function in a femoto-second electron diffraction system. Acta Physica Sinica, 2006, 55(7): 3368-3374. doi: 10.7498/aps.55.3368
    [15] Xiao Pei, Zhang Zeng-Ming, Sun Xia, Ding Ze-Jun. Monte Carlo simulation of electron transmission through masks in projection electron lithography. Acta Physica Sinica, 2006, 55(11): 5803-5809. doi: 10.7498/aps.55.5803
    [16] Gao Guo-Liang, Qian Chang-Ji, Zhong Rui, Luo Meng-Bo, Ye Gao-Xiang. Monte Carlo simulation of cluster growth on an inhomogeneous substrate. Acta Physica Sinica, 2006, 55(9): 4460-4465. doi: 10.7498/aps.55.4460
    [17] Yang Ying, Li Qi-Chang, Liu Jun-Ming, Liu Zhi-Guo. Magnetic and dielectric properties of ferroelectromagent Pb(Fe1/2 Nb1/2)O3. Acta Physica Sinica, 2005, 54(9): 4213-4216. doi: 10.7498/aps.54.4213
    [18] Gao Guo-Liang, Qian Chang-Ji, Li Hong, Huang Xiao-Hong, Gu Wen-Jing, Ye Gao-Xiang. Computer simulation for ramified aggregates on nonlattice substrates with impurities. Acta Physica Sinica, 2005, 54(6): 2600-2605. doi: 10.7498/aps.54.2600
    [19] WU FENG-MIN, SHI JIAN-QING, WU ZI-QIN. SIMULATION OF THE INITIAL GROWTH OF METAL THIN FILMS AT HIGH TEMPERATURE. Acta Physica Sinica, 2001, 50(8): 1555-1559. doi: 10.7498/aps.50.1555
    [20] SHANG YE-CHUN, ZHANG YI-MEN, ZHANG YU-MING. MONTE CARLO SIMULATION OF ELECTRON TRANSPORT IN 6H-SiC. Acta Physica Sinica, 2000, 49(9): 1786-1791. doi: 10.7498/aps.49.1786
Metrics
  • Abstract views:  1790
  • PDF Downloads:  56
  • Cited By: 0
Publishing process
  • Received Date:  09 March 2024
  • Accepted Date:  08 April 2024
  • Available Online:  29 April 2024
  • Published Online:  20 June 2024

/

返回文章
返回