Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation study on the Relativistic Runaway Electron Avalanche in Thundercloud with CORSIKA

ZHOU Tian ZHOU Xunxiu HE Huihai YANG Ci GUO Kejun CHEN Xuejian WEI Rumeng JI Seyuan HUANG Daihui

Citation:

Simulation study on the Relativistic Runaway Electron Avalanche in Thundercloud with CORSIKA

ZHOU Tian, ZHOU Xunxiu, HE Huihai, YANG Ci, GUO Kejun, CHEN Xuejian, WEI Rumeng, JI Seyuan, HUANG Daihui
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Terrestrial Gamma-ray Flashes (TGFs) originating from the Earth's atmosphere, accompanied by thunderstorms and lightning activity, is one of the hot spots in the interdisciplinary of cosmic ray and atmospheric physics. Over the years, satellite experiments have detected thousands of upward TGFs during thunderstorms, while ground-based experiments have observed some downward TGFs. Nowadays, it is generally accepted that TGFs accompanying lightning leader observed by satellite-based and ground-based experiments involve relativistic runaway electron avalanche (RREA) production. Due to triggering the RREA process needing a very large AEF strength and region, it is difficult to study the RREA process through ground-based experiments. In this paper, we adopt the CORSIKA, combined with a vertically uniform electric field model, to simulate the intensity and energy distribution of RREA electrons in thundercloud with different electric field strengths induced by seed electrons and the secondary electrons in extensive air shower (EAS) from vertical protons with different primary energies. The results show that the number of RREA electrons increases exponentially with the thickness of the thunderclouds, and also increases exponentially with the electric field strength. After pass through the atmosphere with an electric field of -3000 V/cm and a thickness of 800 m, the number of secondary electrons in RREA process increases by approximately 3×104 times. The characteristic length of avalanche (λ) decreases as the electric field strength increases. When the electric field is -1600 V/cm and -3000 V/cm, the λ are approximately ~282 m and ~69 m, respectively. The energy spectrum of RREA electrons gradually softens with increasing layer thickness and strength of electric field, and their mean energy increases with the electric field strength, when the thundercloud thickness exceeds 400 m, the mean energy of RREA electrons gradually stabilizes.When secondary particles pass through a thundercloud with an electric field strength of -3000 V/cm and a thickness of 800 m, the mean energy of RREA electrons is approximately 11.7 MeV. Through the Monte Carlo simulations, we successfully simulated the RREA process that is difficult to observe directly in the atmosphere. The simulation results provide important information for studying the characteristics of TGF source regions, offer clues for detecting downward TGF in ground-based experiments, and contribute to the research on the triggering mechanism of lightning in the atmosphere. In addition, our simulation results are expected to elucidate the relationship between TGF and lightning activity, promoting interdisciplinary research in the fields of atmospheric physics and cosmic ray physics.
  • [1]

    Huang Z H, Zhou X X, Huang D H, Jia H Y, Chen S Z, Ma X H, Liu D, Axikegu, Zhao B, Chen L, Wang P H 2021 Acta Phys. Sin. 70 199301 (in Chinese) [黄志成,周勋秀,黄代绘,贾焕玉,陈松战,马欣华,刘栋,阿西克古,赵兵,陈林和王培汉 2021 物理学报 70 199301]

    [2]

    Liu D X, Qie X S, Wang Z C, Wu X K, Pan L X 2013 Acta Phys. Sin. 62 219201(in Chinese) [刘冬霞,郄秀书,王志超, 吴学珂和潘伦湘 2013物理学报 62 219201]

    [3]

    Marshall T C, Stolzenburg M, Maggio C R, Coleman L M 2005 Geophys. Res.Lett. 32 L03813

    [4]

    Stolzenburg M, Marshall T C, Rust W D, Bruning E, MacGorman D R, Hamlin T 2007 Geophys. Res.Lett. 34 L04804

    [5]

    Wilson C T R 1924 Proc. Phys. Soc. London 37 32D

    [6]

    Gurevich A V, Milikh G M, Roussel-Dupre R 1992 Phys. Lett. A 165 463

    [7]

    Lv F C, Zhang Y J, Lu G P 2023 Sci. China-Earth Sci. 53 421-443(in Chinese) [吕凡超,张义军,陆高鹏 2023中国科学:地球科学53 421]

    [8]

    Inan U S, Reising S C, Fishman G J, Horack J M 1996 Geophys. Res. Lett. 23 1017

    [9]

    Fishman G J, Bhat P N, Mallozzi R, Horack J M, Koshut T, Kouveliotou C, Pendleton G N, Meegan C A, Wilson R B, Paciesas W S, Goodman S, Christian H 1994 Science 264 1313

    [10]

    Briggs M S, Fishman G J, Connaughton V, Bhat P N, Paciesas W S, Preece R D, Wilson-Hodge C, Chaplin V L, Kippen R M, Kienlin A V, Meegan C A, Bissaldi E, Dwyer J R, Smith D M, Holzworth R H, Grove J E, Chekhtman A 2010 J. Geophys. Res. 115 A07323

    [11]

    Marisaldi M, Fuschino F, Labanti C, Galli M, Longo F, Del Monte E, Barbiellini G, Tavani M, Giuliani A, Moretti E, Vercellone S, Costa E, Cutini S, Donnarumma I, Evangelista Y, Feroci M, Lapshov I, Lazzarotto F, Lipari P, Mereghetti S, Pacciani L, Rapisarda M, Soffitta P, Trifoglio M, Argan A, Boffelli F, Bulgarelli A, Caraveo P, Cattaneo W P, Chen A, Cocco V, D'Ammando F, De Paris G, Di Cocco G, Di Persio G, Ferrari A, Fiorini M, Froysland T, Gianotti F, Morselli A, Pellizzoni A, Perotti F, Picozza P, Piano G, Pilia M, Prest M, Pucella G, Rappoldi A, Rubini A, Sabatini S, Striani E, Trois A, Vallazza E, Vittorini V, Zambra A, Zanello D, Antonelli L A, Colafrancesco S, Gasparrini D, Giommi P, Pittori C, Preger B, Santolamazza P, Verrecchia F, Salotti L 2010 J. Geophys. Res. 115 A00E13

    [12]

    The Insight-HXMT team 2020 Sci. China-Phys. Mech. Astron. 63 249502

    [13]

    Chen C, Xiao S, Xiong S L, Yu N, Wen X Y, Gong K, Li X Q, Li C Y, Hou D J, Yang X T, Zhao Z J, Zhu Y X, Zhang D L, An Z H, Zhao X Y, Xu Y P, Wang Y S 2021 Exp. Astron. 52 45

    [14]

    Dwyer J R, Rassoul H K, Al-Dayeh M, Caraway L, Wright B, Chrest A, Uman M A, Rakov V A, Rambo K J, Jordan D M, Jerauld J, Smyth C 2004 Geophys. Res. Lett. 31 L05119

    [15]

    Hare B M, Uman M A, Dwyer J R, Joradn D M, Blggerstaff M L, Caicedo J A, Carvalho F L, Wilkes R A, Kotovsky D A, Gamerota W R, Pilkey J T, Ngin T K, Moore R C, Rasoule H K, Cummer S A, Grove J E, Nag A, Betten D P, Bozarth A 2016 J. Geophys. Res. Atmos. 121 6511

    [16]

    Enoto T, Wada Y, Furuta Y, Nakazawa K, Yuasa T, Okuda K, Makihima K, Sato M, Sato Y, Nakano T, Umemoto D, Tsuchiya H, GROWTH collaboration 2017 Nature 551 481

    [17]

    Abbasi R U, Abu‐Zayyad T, Allen M, Barcikowski E, Belz J W, Bergman D R, Blake S A, Byrne M, Cady R, Cheon B G, Chiba J, Chikawa M, Fujii T, Fukushima M, Furlich G, Goto T, Hanlon W, Hayashi D, Hayashida N, Hibino K, Honda D, Ikeda D, Inoue N, Ishii T, Ito H, Ivanov D, Jeong S, Jui C C H, Kadota K, Kakimoto F, Kalashev O, Kasahara K, Kawai H, Kawamura S, Kawata K, Kido E, Kim B R, Kim J H, Kim J, Kishigami S, Krehbiel P R, Kuzmin V, Kwon Y J, Lan R, LeVon R, Lundquist J P, Machida K, Martens K, Matuyama T, Matthews J N, Minamino M, Mukaiyama K, Myers I, Nagataki S, Nakamura R, Nakamura T, Nonaka T, Ogio S, Ohnishi M, Ohoka H, Okuda T, Ono M, Onogi R, Oshima A, Ozawa S, Park I H, Pshirkov M S, Remington J, Rison W, Rodeheffer D, Rodriguez D C, Rubtsov G, Ryub D, Sagawa H, Sakaki N, Sakurai H, Seki K, Sekino Y, Shah P D, Shibata F, Shibata H, Shimodaira H, Shin B K, Shin J H, Smith J D, Sokolsky P, Springer R W, Stokes B T, Stroman T, Taka T, Takeda M, Takeshita A, Taketa A, Takita M, Tameda Y, Tanaka H, Tanaka K, Tanaka M, Tanaka M, Thomas R J, Thomas S B, Thomson G B, Tinyakov P, Tkachev I, Tokuno H, Tomida T, Troitsky S, Tsuneda Y, Uchihori Y, Udo S, Urban F, Vasiloff G, Wong T, Yamamoto M, Yamane R, Yamaoka H, Yamazaki K, Yang J, Yashiro K, Yoneda Y, Yoshida S, Yoshii H, Zundel Z 2018 J. Geophys. Res. Atmos. 123 6864

    [18]

    Wada Y, Enoto T, Nakazawa K, Furuta Y, Yuasa T, Nakamura Y, Morimoto T, Matsumoto T, Makishima K, Tsuchiya H 2019 Phys. Rev. Lett. 123 061103

    [19]

    Balz J W, Krehbiel P R, Remington J, Stanley M A, Abbasi R U, LeVon R, Rison W, Rodeheffer D, Abu-Zayyad T, Allen M, Barcikowski E, Bergman D R, Blake S A, Byrne M, Cady R, Cheon B G, Chikawa M, di Matteo A, Fujii T, Fujiwara F, Fukushima M, Furlich G, Hanlon W, Hayashi Y, Hayashida N, Hibino K, Honda K, Ikeda D, Inadomi T, Inoue N, Ishii T, Ito H, Ivanov D, Iwakura H, Jeong H M, Jeong S, Jui C C H, Kadota K, Kakimoto F, Kalashev O, Kasahara R, Kasami A, Kawamura S, Kawata K, Kido E, Kim B H, Kim J H, Kim J H, Kwon Y J, Lee K H, Lubsandrozhiev B, Lundquist J P, Machida K, Matsumiya H, Matthews J N, Matuyama T, Mayta R, Minamino M, Mukai K, Myers I, Nagataki S, Nakai R, Nakamura K, Nakamura T, Nakamura T, Nakamura T, Nakamura T, Nonaka T, Oda H, Ogio S, Ohnishi M, Ohoka H, Oku K, Okuda T, Omura Y, Ono M, Oshima A, Ozawa S, Park I H, Potts M, Pshirkov M S, Rodriguez D C, Rubtsov G, Ryu D, Sagawa H, Sahara Y, Saito K, Saito K, Sakaki N, Sako T, Sakurai N, Sano K, Seki K, Sekino K, Shibata F, Shibata T, Shimodaira H, Shin B K, Shin H S, Smith J D, Sokolsky P, Sone N, Stokes B T, Stroman T A, Takagi Y, Takahashi Y, Takeda M, Taketa A, Takita M, Tanaka K, Tanaka K, Tanaka M, Tanaka M, Tanoue S, Thomas S B, Thomson G B, Tinyakov P, Tkachev I, Tokuno H, Tomida T, Troitsky S, Tsunesada Y, Uchihori Y, Udo S, Uehama T, Urban F, Wallace T, Wong T, Yamamoto M, Yamaoka H, Yamazaki K, Yashiro K, Yosei M, Yoshii H, Zhezher Y, Zundel Z 2020 J. Geophys. Res. Atmos. 125 e2019JD031940

    [20]

    Qie X S, Wang J F 2010 Adv. Earth Sci. 25 893-906 (in Chinese) [郄秀书,王俊芳 2010 地球科学进展 25 893]

    [21]

    Dwyer J R 2003 Geophys. Res. Lett. 30 2055

    [22]

    Symbalisty E M D, Roussel-Dupre R A, Yukhimuk V A 1998 IEEE Trans. Plasma Sci. 26 1575

    [23]

    Skeltved A B, Ostgaard N, Carlson B, Gjesteland T, Celestin S 2014 J. Geophys. Res. 119 9174

    [24]

    Li X Q, Zhou H Z, Jiang R B, Li P, Song L J, Li Y N, Li W, Zheng Y 2018 Nucl. Electron. Detect. Technol. 38 0360-0367 (in Chinese) [李小强,周红召,蒋如斌2018核电子学与探测技术38 0360]

    [25]

    Gurevich A V, Milikh G M, Roussel-Dupre R 1992 Phys. Lett. A 165 463

    [26]

    Heck D, Knapp J, Capdevielle J N, Schatz G, Thouw T 1998 FZKA: Forschungszentrum Karlsruhe GmbH, Karube, 6019

    [27]

    Zhou X X, Wang X J, Huang D H, Jia H Y 2016 Chin. J. Space Sci. 36 49-55 (in Chinese) [周勋秀, 王新建, 黄代绘和贾焕玉 2016空间科学学报 36 49]

    [28]

    Dwyer J R, Smith D M, Cummer S A 2012 Space Sci. Rev. 173 133

    [29]

    Babich L P, Donskoy E N, Il'Kaev R I, Kutsyk I M, Roussel-Dupre R A 2004 Plasma Phys. Rep. 30 616

  • [1] WANG Dexin, ZHANG Rui, YU Dekang, NA Hui, YAO Zhanghao, WU Linghe, ZHANG Suyalatu, LIANG Tairan, HUANG Meirong, WANG Zhilong, BAI Yu, HUANG Yongshun, YANG Xue, ZHANG Jiawen, LIU Mengdi, MA Qiang, YU Jing, JI Xiuyan, YU Yiliqi, SHAO Xuepeng. Observation and research on cosmic ray muons and solar modulation effect based on plastic scintillator detector. Acta Physica Sinica, doi: 10.7498/aps.74.20241704
    [2] Axikegu, Zhou Xun-Xiu, Zhang Yun-Feng. Effects of thunderstorms electric field on secondary photons of cosmic ray at large high altitude air shower observatory. Acta Physica Sinica, doi: 10.7498/aps.73.20240341
    [3] Liu Ye, Niu He-Ran, Li Bing-Bing, Ma Xin-Hua, Cui Shu-Wang. Application of machine learning in cosmic ray particle identification. Acta Physica Sinica, doi: 10.7498/aps.72.20230334
    [4] Zhang Feng, Liu Hu, Zhu Feng-Rong. Properties of secondary components in extensive air shower of cosmic rays in knee energy region. Acta Physica Sinica, doi: 10.7498/aps.71.20221556
    [5] Han Rui-Long, Cai Ming-Hui, Yang Tao, Xu Liang-Liang, Xia Qing, Han Jian-Wei. Mechanism of cosmic ray high-energy particles charging test mass. Acta Physica Sinica, doi: 10.7498/aps.70.20210747
    [6] Huang Zhi-Cheng, Zhou Xun-Xiu, Huang Dai-Hui, Jia Huan-Yu, Chen Song-Zhan, Ma Xin-Hua, Liu Dong, AXi Ke-Gu, Zhao Bing, Chen Lin, Wang Pei-Han. Simulation study of scaler mode at large high altitude air shower observatory. Acta Physica Sinica, doi: 10.7498/aps.70.20210632
    [7] Wang Chao, Zhou Yan-Li, Wu Fan, Chen Ying-Cai. Monte Carlo simulation on the adsorption of polymer chains on polymer brushes. Acta Physica Sinica, doi: 10.7498/aps.69.20200411
    [8] Wang Chao, Chen Ying-Cai, Zhou Yan-Li, Luo Meng-Bo. Diffusion of diblock copolymer in periodical channels:a Monte Carlo simulation study. Acta Physica Sinica, doi: 10.7498/aps.66.018201
    [9] Zhou Xun-Xiu, Wang Xin-Jian, Huang Dai-Hui, Jia Huan-Yu, Wu Chao-Yong. Simulation study on the correlation between the ground cosmic rays and the near earth thunderstorms electric field at Yangbajing (Tibet China). Acta Physica Sinica, doi: 10.7498/aps.64.149202
    [10] Zheng Hui, Zhang Chong-Hong, Chen Bo, Yang Yi-Tao, Lai Xin-Chun. Inhibition effect of low-temperature pre-irradiation of helium ions on the growth of helium bubble in stainless steel:a Monte Carlo simulation. Acta Physica Sinica, doi: 10.7498/aps.63.106102
    [11] Wang Jun-Fang, Qie Xiu-Shu, Lu Hong, Zhang Ji-Long, Yu Xiao-Xia, Shi Feng. Effect of thunderstorm electric field on intensity of cosmic ray muons. Acta Physica Sinica, doi: 10.7498/aps.61.159202
    [12] Zhou Yu-Lu, Li Ren-Shun, Zhang Bao-Ling, Deng Ai-Hong, Hou Qing. Monte Carlo simulations of the evolution of helium depth distribution in materials. Acta Physica Sinica, doi: 10.7498/aps.60.060702
    [13] Gao Qian, Lou Xiao-Yan, Qi Yang, Shan Wen-Guang. Monte Carlo simulation on the property of ferromagnetic order of Zn1- x Mn x O Nanofilms. Acta Physica Sinica, doi: 10.7498/aps.60.036401
    [14] Guo Bao-Zeng, Zhang Suo-Liang, Liu Xin. Electron transport property in wurtzite GaN at high electric field with Monte Carlo simulation. Acta Physica Sinica, doi: 10.7498/aps.60.068701
    [15] Yao Wen-Jing, Wang Nan. Monte Carlo simulation of thermophysical properties of Ni-15%Mo alloy melt. Acta Physica Sinica, doi: 10.7498/aps.58.4053
    [16] Huang Chao-Jun, Liu Ya-Feng, Long Shu-Ming, Sun Yan-Qing, Wu Zhen-Sen. Monte Carlo simulation of transfer-characteristics of electromagnetic wave propagating in soot. Acta Physica Sinica, doi: 10.7498/aps.58.2397
    [17] Gao Guo-Liang, Qian Chang-Ji, Zhong Rui, Luo Meng-Bo, Ye Gao-Xiang. Monte Carlo simulation of cluster growth on an inhomogeneous substrate. Acta Physica Sinica, doi: 10.7498/aps.55.4460
    [18] Xiao Pei, Zhang Zeng-Ming, Sun Xia, Ding Ze-Jun. Monte Carlo simulation of electron transmission through masks in projection electron lithography. Acta Physica Sinica, doi: 10.7498/aps.55.5803
    [19] DENG CHAO-YONG, ZHAO HUI, WANG YONG-SHENG. SPATIAL DISTRIBUTION OF ELECTRON ENERGY IN THIN FILM ELECTROLUMINESCENT DEVICES. Acta Physica Sinica, doi: 10.7498/aps.50.1385
    [20] SHANG YE-CHUN, ZHANG YI-MEN, ZHANG YU-MING. MONTE CARLO SIMULATION OF ELECTRON TRANSPORT IN 6H-SiC. Acta Physica Sinica, doi: 10.7498/aps.49.1786
Metrics
  • Abstract views:  49
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  14 August 2025
  • /

    返回文章
    返回