Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Muon radiography simulation for underground palace of Qinshihuang Mausoleum

Su Ning Liu Yuan-Yuan Wang Li Cheng Jian-Ping

Citation:

Muon radiography simulation for underground palace of Qinshihuang Mausoleum

Su Ning, Liu Yuan-Yuan, Wang Li, Cheng Jian-Ping
PDF
HTML
Get Citation
  • Muon radiography is a nondestructive imaging technology based on the naturally existing cosmic ray muons. Because cosmic ray muons have the strong ability to penetrate, muon radiography in which the absorption of muons through matter is utilized, is especially suitable for the imaging of large-scale objects. While the traditional geophysical technologies used in archeology have some limitations, muon radiography is expected to become a powerful supplement in the nondestructive detection of large-scale cultural relics. Based on Monte Carlo simulation method Geant4, the muon radiography of the underground palace of Qinshihuang Mausoleum is studied in this work. A model of the underground palace of Qinshihuang Mausoleum is set up with GEANT4 program according to the data acquired by the previous archaeological study of Qinshihuang Mausoleum’s inner structure, as well as a reference model without these inner structure. By investigating the differences between the muon fluxes obtained from the two models, the muon radiography image of the inner structure of the model can be obtained. During the simulation, the cosmic ray muon source is generated by sampling according to an empirical formula summarized by Reyna, which can accurately describe the energy spectrum and angular distribution of cosmic ray muons at sea level. In addition, two viewpoints are selected in order to determine the three-dimensional position of the chamber. The simulation data are processed by using an image reconstruction algorithm which can be described as the following three steps. Firstly, the counts of muons in different directions are converted into muon flux. Secondly, the muon flux of the reference model is deducted from that of the Qinshihuang Mausoleum model, and the angular coordinates of the chamber walls are determined. Finally, combined with the wall’s angular coordinates obtained from the two viewpoints and the relative position between the two viewpoints, the chamber size and its position are reconstructed according to the geometric relationship. The errors of the reconstructed chamber center position and the length of chamber walls are both approximately 7%. In this article, we conduct only a preliminary study of muon radiography applied to the nondestructive detection of Qinshihuang Mausoleum, but the results show that muon radiography can be a promising tool for the archeological study of Qinshihuang Mausoleum. In the follow-up study, more factors will be taken into consideration, including the details of Qinshihuang Mausoleum model, and the improvement of image reconstruction algorithm.
      Corresponding author: Liu Yuan-Yuan, yyliu@bnu.edu.cn ; Wang Li, wangl@bnu.edu.cn
    • Funds: Project supported by the Nuclear and Radiation Security Technology in Ministry of Ecology and Environment, China (Grant No. NSCCG2021-052)
    [1]

    Amenomori M, Bao Y W, Bi X J, et al. 2019 Phys. Rev. Lett. 123 51101Google Scholar

    [2]

    Cao Z, Aharonian F A, An Q, et al. 2021 Nature 594 33Google Scholar

    [3]

    Liu Y Y, Chen Z Q, Zhao Z R, Zhang L, Wang Z T 2009 Tsinghua Sci. Technol. 14 313Google Scholar

    [4]

    Tanaka H K M, Nakano T, Takahashi S, et al. 2007 Earth Planet. Sci. Lett. 263 104Google Scholar

    [5]

    George E P 1955 Commonw. Eng. 1955 455

    [6]

    Alvarez L W, Anderson J A, Bedwei F E, et al. 1970 Science 167 832Google Scholar

    [7]

    Nagamine, K, Iwasaki, M, Shimomura K, Ishida K 1995 Nucl. Instrum. Methods Phys. Res., Sect. A 356 585Google Scholar

    [8]

    Caffau E, Coren F, Giannini G 1997 Nucl. Instrum. Methods Phys. Res., Sect. A 385 480Google Scholar

    [9]

    Malmqvist L, Jonsson G, Kristiansson K, Jacobsson L 1979 Geophysics 44 1549Google Scholar

    [10]

    Carbone D, Gibert D, Marteau J, Diament M, Zuccarello L, Galichet E 2014 Geophys. J. Int. 196 633Google Scholar

    [11]

    Tanaka H K M 2016 Sci. Rep. 6 39741Google Scholar

    [12]

    Rosas-Carbajal M, Jourde K, Marteau J, Deroussi S, Komorowski J C, Gibert D 2017 Geophys. Res. Lett. 44 6743Google Scholar

    [13]

    Schouten D, Ledru P 2018 J. Geophys. Res. Solid Earth 123 8637Google Scholar

    [14]

    Morishima K, Kuno M, Nishio A, et al. 2017 Nature 552 386Google Scholar

    [15]

    Saracino G, Amato L, Ambrosino F, et al. 2017 Sci. Rep. 7 1181Google Scholar

    [16]

    蒋宏耀, 张立敏 1997 地球物理学报 40 383

    Jiang H Y, Zhang L M 1997 Chin. J. Geophys. 40 383

    [17]

    宗鑫, 王心源, 刘传胜, 骆磊 2016 地球信息科学学报 18 273

    Zong X, Wang X Y, Liu C S, Luo L 2016 J. Geo-Information Science 18 273

    [18]

    林金鑫 2011 博士学位论文 (杭州: 浙江大学)

    Lin X J 2011 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [19]

    Beringer J, Arguin J F, Barnett R M, et al. 2012 Phys. Rev. D 86 010001Google Scholar

    [20]

    Tsuji S, Katayama T, Okei K, Wada T, Yamamoto I, Yamashita Y 1998 J. Phys. G:Nucl. Part. Phys. 24 1805Google Scholar

    [21]

    Agostinelli S, Allison J, Amako K, et al. 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 506 250Google Scholar

    [22]

    于国明, 王书民, 王帮兵, 等 2005 秦始皇陵地宫地球物理探测成果与技术 (北京: 地质出版社) 第17—58页

    Yu G M, Wang S M, Wang B B, et al. 2005 Geophysical Exploration for the Underground Palace of Emperor Qinshihuang Mausoleum (Beijing: Geological Publishing House) pp17–58 (in Chinese)

    [23]

    吴明清, 文启忠, 潘景瑜, 刁桂仪 1996 自然科学进展 01 82

    Wu M Q, Wen Q Z, Pan J Y, Diao G Y 1996 Prog. Nat. Sci. 01 82

    [24]

    Gaisser T K 1990 Cosmic Rays and Particle Physics (New York: Cambridge University Press) p71

    [25]

    Reyna D 2006 arXiv: 0604145v2 [hep-ph]

    [26]

    Smith J A, Duller N M 1959 J. Geophys. Res. 64 2297Google Scholar

    [27]

    Su N, Liu Y Y, Wang L, Wu B, Cheng J P 2021 Front. Energy Res. 9 640Google Scholar

  • 图 1  (a) 实验测量得到的不同方向上的海平面μ子通量[20]; (b)探测器探测到的μ子的方位角φ和天顶角θ, 其中xOy为水平面

    Figure 1.  (a) Sea-level muon flux at different zenith angles measured in experiment[20]; (b) zenith angle θ and azimuth angle φ of the muon detected by a detector. The xOy plane represents for horizontal plane.

    图 2  测量点与ROI之间的几何关系示意图

    Figure 2.  Geometric relationship between viewpoint and ROI.

    图 3  秦始皇陵模型示意图 (a) 模型1内部结构示意图; (a1) 模型1俯视图; (a2) 模型1正视图; (a3) 模型1剖面3示意图; (a4) 模型1剖面1示意图; (b) 模型2示意图(无内部结构);

    Figure 3.  Model of Qinshihuang Mausoleum: (a) Inner structure of Model 1; (a1) top view of Model 1; (a2) front view of Model 1; (a3) profile 3 of Model 1; (a4) profile 1 of Model 1; (b) Model 2 (no inner structure).

    图 4  根据Reyna公式抽样产生的1000万个μ子的动量和天顶角分布 (a) μ子数量随μ子动量变化分布; (b) μ子数量随μ子速度方向的天顶角变化分布

    Figure 4.  Momentum spectrum and zenith angle distribution of the 10 million muons sampled by Reyna formula: (a) Momentum spectrum of the sampled muons; (b) zenith angle distribution of the sampled muons.

    图 5  两个测量点得到的$ f(\theta, \varphi ) $的二维投影图 (a)测量点1的$ f(\theta, \varphi ) $投影图, 其中, $ {\rm{t}\rm{a}\rm{n}}{\theta }_{x}={\rm{t}\rm{a}\rm{n}}\theta {\rm{c}}{\rm{o}}{\rm{s}} \varphi $, ${\rm{t}\rm{a}\rm{n}}{\theta }_{y}= $$ {\rm{t}\rm{a}\rm{n}}\theta {\rm{s}}\rm{i}\rm{n} \varphi$; (b)测量点2的$ f(\theta, \varphi ) $投影图

    Figure 5.  Two-dimensional projection of $ f\left(\theta, \varphi \right) $ obtained at viewpoint 1 and 2: (a) Distribution of $ f\left(\theta, \varphi \right) $ obtained at viewpoint 1, where the $ {\rm{t}\rm{a}\rm{n}}{\theta }_{x}={\rm{t}\rm{a}\rm{n}}\theta {\rm{c}}{\rm{o}}{\rm{s}} \varphi $, $ {\rm{t}\rm{a}\rm{n}}{\theta }_{y}={\rm{t}\rm{a}\rm{n}}\theta {\rm{s}}\rm{i}\rm{n} \varphi $; (b) distribution of $ f\left(\theta, \varphi \right) $obtained at viewpoint 2.

    图 6  墓室三维重建结果 (a) 剖面1处重建结果; (b)剖面2处重建结果

    Figure 6.  Three-dimensional reconstruction results of the chamber: (a) Reconstruction result at Profile 1; (b) reconstruction result at Profile 2

    表 1  秦始皇陵地宫模型材质及密度定义表[22]

    Table 1.  Material and density definition table of the Qinshihuang Mausoleum model[22].

    区域名称材质密度$/(\rm{g}\cdot{\rm{c} }{\rm{m} }^{-3})$
    土地黄土1.6
    封土堆黄土1.85
    细夯土墙黄土1.95
    回填夯土黄土1.85
    宫墙碳酸钙2.7
    墓室空气$ 1.29\times {10}^{-3} $
    DownLoad: CSV
  • [1]

    Amenomori M, Bao Y W, Bi X J, et al. 2019 Phys. Rev. Lett. 123 51101Google Scholar

    [2]

    Cao Z, Aharonian F A, An Q, et al. 2021 Nature 594 33Google Scholar

    [3]

    Liu Y Y, Chen Z Q, Zhao Z R, Zhang L, Wang Z T 2009 Tsinghua Sci. Technol. 14 313Google Scholar

    [4]

    Tanaka H K M, Nakano T, Takahashi S, et al. 2007 Earth Planet. Sci. Lett. 263 104Google Scholar

    [5]

    George E P 1955 Commonw. Eng. 1955 455

    [6]

    Alvarez L W, Anderson J A, Bedwei F E, et al. 1970 Science 167 832Google Scholar

    [7]

    Nagamine, K, Iwasaki, M, Shimomura K, Ishida K 1995 Nucl. Instrum. Methods Phys. Res., Sect. A 356 585Google Scholar

    [8]

    Caffau E, Coren F, Giannini G 1997 Nucl. Instrum. Methods Phys. Res., Sect. A 385 480Google Scholar

    [9]

    Malmqvist L, Jonsson G, Kristiansson K, Jacobsson L 1979 Geophysics 44 1549Google Scholar

    [10]

    Carbone D, Gibert D, Marteau J, Diament M, Zuccarello L, Galichet E 2014 Geophys. J. Int. 196 633Google Scholar

    [11]

    Tanaka H K M 2016 Sci. Rep. 6 39741Google Scholar

    [12]

    Rosas-Carbajal M, Jourde K, Marteau J, Deroussi S, Komorowski J C, Gibert D 2017 Geophys. Res. Lett. 44 6743Google Scholar

    [13]

    Schouten D, Ledru P 2018 J. Geophys. Res. Solid Earth 123 8637Google Scholar

    [14]

    Morishima K, Kuno M, Nishio A, et al. 2017 Nature 552 386Google Scholar

    [15]

    Saracino G, Amato L, Ambrosino F, et al. 2017 Sci. Rep. 7 1181Google Scholar

    [16]

    蒋宏耀, 张立敏 1997 地球物理学报 40 383

    Jiang H Y, Zhang L M 1997 Chin. J. Geophys. 40 383

    [17]

    宗鑫, 王心源, 刘传胜, 骆磊 2016 地球信息科学学报 18 273

    Zong X, Wang X Y, Liu C S, Luo L 2016 J. Geo-Information Science 18 273

    [18]

    林金鑫 2011 博士学位论文 (杭州: 浙江大学)

    Lin X J 2011 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [19]

    Beringer J, Arguin J F, Barnett R M, et al. 2012 Phys. Rev. D 86 010001Google Scholar

    [20]

    Tsuji S, Katayama T, Okei K, Wada T, Yamamoto I, Yamashita Y 1998 J. Phys. G:Nucl. Part. Phys. 24 1805Google Scholar

    [21]

    Agostinelli S, Allison J, Amako K, et al. 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 506 250Google Scholar

    [22]

    于国明, 王书民, 王帮兵, 等 2005 秦始皇陵地宫地球物理探测成果与技术 (北京: 地质出版社) 第17—58页

    Yu G M, Wang S M, Wang B B, et al. 2005 Geophysical Exploration for the Underground Palace of Emperor Qinshihuang Mausoleum (Beijing: Geological Publishing House) pp17–58 (in Chinese)

    [23]

    吴明清, 文启忠, 潘景瑜, 刁桂仪 1996 自然科学进展 01 82

    Wu M Q, Wen Q Z, Pan J Y, Diao G Y 1996 Prog. Nat. Sci. 01 82

    [24]

    Gaisser T K 1990 Cosmic Rays and Particle Physics (New York: Cambridge University Press) p71

    [25]

    Reyna D 2006 arXiv: 0604145v2 [hep-ph]

    [26]

    Smith J A, Duller N M 1959 J. Geophys. Res. 64 2297Google Scholar

    [27]

    Su N, Liu Y Y, Wang L, Wu B, Cheng J P 2021 Front. Energy Res. 9 640Google Scholar

  • [1] Li Yu-Peng, Tang Xiu-Zhang, Chen Xin-Nan, Gao Chun-Yu, Chen Yan-Nan, Fan Cheng-Jun, Lü Jian-You. Experimental study on material discrimination based on muon discrete energy. Acta Physica Sinica, 2023, 72(2): 029501. doi: 10.7498/aps.72.20221645
    [2] Li Bo, Li Ling, Zhu Jing-Jun, Lin Wei-Ping, An Zhu. Measurements of K-shell ionization cross sections and L-shell X-ray production cross sections of Al, Ti, Cu, Ag, and Au thin films by low-energy electron impact. Acta Physica Sinica, 2022, 71(17): 173402. doi: 10.7498/aps.71.20220162
    [3] Xun Zhi-Peng, Hao Da-Peng. Monte Carlo simulation of bond percolation on square lattice with complex neighborhoods. Acta Physica Sinica, 2022, 71(6): 066401. doi: 10.7498/aps.71.20211757
    [4] Wang Li-Min, Duan Bing-Huang, Xu Xian-Guo, Li Hao, Chen Zhi-Jun, Yang Kun-Jie, Zhang Shuo. Simulation of neutron irradiation damage in lead lanthanum zirconate titanate by Monte Carlo method. Acta Physica Sinica, 2022, 71(7): 076101. doi: 10.7498/aps.71.20212041
    [5] Li Ying-Han, An Zhu, Zhu Jing-Jun, Li Ling. Characteristic X-ray yields and cross sections of thick targets of Al, Ti, Zr, W and Au induced by keV-electron impact. Acta Physica Sinica, 2020, 69(13): 133401. doi: 10.7498/aps.69.20200264
    [6] Ren Jie, Ruan Xi-Chao, Chen Yong-Hao, Jiang Wei, Bao Jie, Luan Guang-Yuan, Zhang Qi-Wei, Huang Han-Xiong, Wang Zhao-Hui, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Gu Min-Hao, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng. In-beam γ-rays of back-streaming white neutron source at China Spallation Neutron Source. Acta Physica Sinica, 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [7] Tian Zi-Ning, Ouyang Xiao-Ping, Chen Wei, Wang Xue-Mei, Deng Ning, Liu Wen-Biao, Tian Yan-Jie. Source boundary parameter of Monte Carlo inversion technology based on virtual source principle. Acta Physica Sinica, 2019, 68(23): 232901. doi: 10.7498/aps.68.20191095
    [8] Li Wen-Fang, Du Jin-Jin, Wen Rui-Juan, Yang Peng-Fei, Li Gang, Zhang Tian-Cai. Single-atom transfer in a strongly coupled cavity quantum electrodynamics: experiment and Monte Carlo simulation. Acta Physica Sinica, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [9] Zhang Fa-Qiang, Qi Jian-Min, Zhang Jian-Hua, Li Lin-Bo, Chen Ding-Yang, Xie Hong-Wei, Yang Jian-Lun, Chen Jin-Chuan. A method of fast-neutron imaging with energy threshold based on an imaging plate. Acta Physica Sinica, 2014, 63(12): 128701. doi: 10.7498/aps.63.128701
    [10] Hua Yu-Chao, Dong Yuan, Cao Bing-Yang. Monte Carlo simulation of phonon ballistic diffusive heat conduction in silicon nanofilm. Acta Physica Sinica, 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [11] Lan Mu, Xiang Gang, Gu Gang-Xu, Zhang Xi. A Monte Carlo simulation study on growth mechanism of horizontal nanowires on crystal surface. Acta Physica Sinica, 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [12] Fan Xiao-Hui, Zhao Xing-Yu, Wang Li-Na, Zhang Li-Li, Zhou Heng-Wei, Zhang Jin-Lu, Huang Yi-Neng. Monte Carlo simulations of the relaxation dynamics of the spatial relaxation modes in the molecule-string model. Acta Physica Sinica, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [13] Chen Shan, Wu Qing-Yun, Chen Zhi-Gao, Xu Gui-Gui, Huang Zhi-Gao. Ferromagnetism of C doped ZnO: first-principles calculation and Monte Carlo simulation. Acta Physica Sinica, 2009, 58(3): 2011-2017. doi: 10.7498/aps.58.2011
    [14] Xiong Kai-Guo, Feng Guo-Lin, Hu Jing-Guo, Wan Shi-Quan, Yang Jie. Monte Carlo simulation of the record-breaking high temperature events of climate changes. Acta Physica Sinica, 2009, 58(4): 2843-2852. doi: 10.7498/aps.58.2843
    [15] Gao Fei, Ryoko Yamada, Mitsuo Watanabe, Liu Hua-Feng. Use of Monte Carlo simulations for the scatter events analysis of PET scanners. Acta Physica Sinica, 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
    [16] Xu Lan-Qing, Li Hui, Xiao Zheng-Ying. Discussion on backscattered photon numbers and their scattering events in a turbid media. Acta Physica Sinica, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [17] He Qing-Fang, Xu Zheng, Liu De-Ang, Xu Xu-Rong. Monte Carlo simulation of the effect of impact ionization in thin-film electroluminescent devices. Acta Physica Sinica, 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [18] Wang Zhi-Jun, Dong Li-Fang, Shang Yong. Monte Carlo simulation of optical emission spectra in electron assisted chemical vapor deposition of diamond. Acta Physica Sinica, 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [19] Wang Jian-Hua, Jin Chuan-En. Application of Monte Carlo simulation to the research of ions transport plasma sheaths of glow discharge. Acta Physica Sinica, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
    [20] Guo Zeng-Bao. . Acta Physica Sinica, 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
Metrics
  • Abstract views:  7329
  • PDF Downloads:  242
  • Cited By: 0
Publishing process
  • Received Date:  27 August 2021
  • Accepted Date:  11 November 2021
  • Available Online:  26 January 2022
  • Published Online:  20 March 2022

/

返回文章
返回