-
The process of single-atom transfer in strongly coupled cavity quantum electrodynamics (QED) with free falling atoms is investigated by experiment and Monte Carlo simulation. We conduct the simulation of the whole physical process and give the corresponding experimental results. In experiment, a high finesse optical cavity is used for real-time detection of the single-atom transits from which the interaction information between single atoms and cavity can be extracted, including the transmission spectra of the cavity strongly coupled to single atoms, the interaction duration of the single atoms in the mode, the probability distribution of atom arrival time and the atomic kinetic energy distribution when arriving at the mode. All these can be completely derived from the transmission spectra of the different initial status. An intracavity far-off resonance trap (FORT) has been established and the single-atom trapping time inside the cavity is about 5 ms which is about 30 times longer than that without FORT. This study gives the detailed analysis of the whole procedure of free-falling atom transfer in cavity QED system and is helpful for optimizing the experimental parameters and design.
-
Keywords:
- microcavity /
- Monte Carlo simulation /
- statistic distribution /
- atom trapping
[1] Mabuchi H, Turchette Q A, Chapman M S, Kimble H J 1996 Opt. Lett. 21 1393
[2] Munstermann P, Fischer T, Pinkse P W H, Rempe G 1999 Opt. Commun. 159 63
[3] Zhang P F, Zhang Y C, Li G, Du J J, Zhang Y F, Guo Y Q, Wang J M, Zhang T C, Li W D 2011 Chin. Phys. Lett. 28 044203
[4] Hood C J, Lynn T W, Doherty A C, Parkins A S, Kimble H J 2000 Science 287 1447
[5] Pinkse P W H, Fischer T, Munstermann P, Rempe G 2000 Nature 404 365
[6] Puppe T, Pinkse P, Fischer T, Pinkse P W H, Rempe G 2004 Phys. Scr. T112 7
[7] Zhang P F, Guo Y Q, Li Z H, Zhang Y C, Zhang Y F, Du J J, Li G, Wang J M, Zhang T C 2011 Phys. Rev. A 83 031804
[8] Du J J, Li W F, Wen R J, Li G, Zhang P F, Zhang T C 2013 Appl. Phys. Lett. 102 173504
[9] Zhang P F, Guo Y Q, Li Z H, Zhang Y C, Zhang Y F, Du J J, Li G, Wang J M, Zhang T C 2011 J. Opt. Soc. Am. B 28 667
[10] Ottl A, Ritter S, Kohl M, Esslinger T 2005 Phys. Rev. Lett. 95 090404
[11] Köhl M, Öttl A, Ritter S, Donner T, Bourdel T, Esslinger T 2007 Appl. Phys. B 86 391
[12] Mcke M, Bochmann J, Hahn C, Neuzner A, Nölleke C, Reiserer A, Rempe G, Ritter S 2013 Phys. Rev. A 87 063805
[13] Hijlkema M, Weber B, Specht H P, Webster S C, Kuhn A, Rempe G 2007 Nat. Phys. 3 253
[14] Specht H P, Nölleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature 473 190
[15] Ritter S, Nölleke C, Hahn C, Reiserer A, Neuzner A, Uphoff M, Mcke M, Figueroa E, Bochmann J, Rempe G 2012 Nature 484 195
[16] Kimble H J 2008 Nature 453 1023
[17] Sauer J A, Fortier K M, Chang M S, Hamley C D, Chapman M S 2004 Phys. Rev. A 69 051804
[18] Li W F, Du J J, Wen R J, Yang P F, Li G, Liang J J, Zhang T C 2014 Appl. Phys. Lett. 104 113102
[19] Du J J, Li W F, Wen R J, Li G, Zhang T C 2013 Acta Phys. Sin. 62 194203 (in Chinese) [杜金锦, 李文芳, 文瑞娟, 李刚, 张天才 2013 物理学报 62 194203]
-
[1] Mabuchi H, Turchette Q A, Chapman M S, Kimble H J 1996 Opt. Lett. 21 1393
[2] Munstermann P, Fischer T, Pinkse P W H, Rempe G 1999 Opt. Commun. 159 63
[3] Zhang P F, Zhang Y C, Li G, Du J J, Zhang Y F, Guo Y Q, Wang J M, Zhang T C, Li W D 2011 Chin. Phys. Lett. 28 044203
[4] Hood C J, Lynn T W, Doherty A C, Parkins A S, Kimble H J 2000 Science 287 1447
[5] Pinkse P W H, Fischer T, Munstermann P, Rempe G 2000 Nature 404 365
[6] Puppe T, Pinkse P, Fischer T, Pinkse P W H, Rempe G 2004 Phys. Scr. T112 7
[7] Zhang P F, Guo Y Q, Li Z H, Zhang Y C, Zhang Y F, Du J J, Li G, Wang J M, Zhang T C 2011 Phys. Rev. A 83 031804
[8] Du J J, Li W F, Wen R J, Li G, Zhang P F, Zhang T C 2013 Appl. Phys. Lett. 102 173504
[9] Zhang P F, Guo Y Q, Li Z H, Zhang Y C, Zhang Y F, Du J J, Li G, Wang J M, Zhang T C 2011 J. Opt. Soc. Am. B 28 667
[10] Ottl A, Ritter S, Kohl M, Esslinger T 2005 Phys. Rev. Lett. 95 090404
[11] Köhl M, Öttl A, Ritter S, Donner T, Bourdel T, Esslinger T 2007 Appl. Phys. B 86 391
[12] Mcke M, Bochmann J, Hahn C, Neuzner A, Nölleke C, Reiserer A, Rempe G, Ritter S 2013 Phys. Rev. A 87 063805
[13] Hijlkema M, Weber B, Specht H P, Webster S C, Kuhn A, Rempe G 2007 Nat. Phys. 3 253
[14] Specht H P, Nölleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature 473 190
[15] Ritter S, Nölleke C, Hahn C, Reiserer A, Neuzner A, Uphoff M, Mcke M, Figueroa E, Bochmann J, Rempe G 2012 Nature 484 195
[16] Kimble H J 2008 Nature 453 1023
[17] Sauer J A, Fortier K M, Chang M S, Hamley C D, Chapman M S 2004 Phys. Rev. A 69 051804
[18] Li W F, Du J J, Wen R J, Yang P F, Li G, Liang J J, Zhang T C 2014 Appl. Phys. Lett. 104 113102
[19] Du J J, Li W F, Wen R J, Li G, Zhang T C 2013 Acta Phys. Sin. 62 194203 (in Chinese) [杜金锦, 李文芳, 文瑞娟, 李刚, 张天才 2013 物理学报 62 194203]
Catalog
Metrics
- Abstract views: 6931
- PDF Downloads: 444
- Cited By: 0