Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of neutron irradiation damage in lead lanthanum zirconate titanate by Monte Carlo method

Wang Li-Min Duan Bing-Huang Xu Xian-Guo Li Hao Chen Zhi-Jun Yang Kun-Jie Zhang Shuo

Citation:

Simulation of neutron irradiation damage in lead lanthanum zirconate titanate by Monte Carlo method

Wang Li-Min, Duan Bing-Huang, Xu Xian-Guo, Li Hao, Chen Zhi-Jun, Yang Kun-Jie, Zhang Shuo
PDF
HTML
Get Citation
  • Lead lanthanum zirconate titanate (PLZT) has a broad application prospect for energy storage devices with high energy density, since it possesses excellent dielectric and energy storage properties. To investigate the irradiation damage to the PLZT induced by neutrons with different energy, the primary energetic recoil spectra of each kind of element are first extracted from the transportation simulations of neutrons with energy ranging from 1 to 14 MeV, respectively. Then, the displacement damages (including vacancies and interstitial atoms) induced by each type of recoil with different energy are simulated based on the binary collision approximation method. Finally the number of defects in PLZT produced by neutrons with an energy range from 1 to 14 MeV is calculated based on the recoil energy spectra and the defect number produced by the recoils. The results show that the number of defects produced in the PLZT material with a thickness of 3 cm is approximately independent of the neutron energy for the fast neutrons with energy in a range from 1 to 14 MeV, even though the primary recoil energy spectra from neutrons with different energy are completely different. The average number of defects produced in 3-cm-thick PLZT is about 460 ± 120 vacancies/neutrons. For neutrons with energy ranging from 1 to 14 MeV, the produced defect concentration in PLZT decreases slightly with the depth increasing within a thickness of 3 cm. The difference in defect concentration in this 3 cm is in a range of 50%. This decrease is caused mainly by the fact that some of neutrons are back-scattered during transport. The average defect concentration produced by neutron irradiation in the PLZT with a thickness of 3 cm is slightly(~20%) higher than that in the PLZT with a thickness of 1 mm. The reason for the higher defect concentration in a thicker (3 cm) PLZT can be attributed to the following facts: (i) the (n, 2n) reactions between neutron and material can make the number of neutrons increase during transport; (ii) the scattering can make the path of neutron longer; (iii) the inelastic scattering can lead to a smallnumber of moderated neutrons, which have a slightly larger interaction cross section with materials. This indicates the damage produced in thick PLZT is quite complicated and closely related to the process of neutron transport. This work presents a method of calculating the displacement damage of neutrons in materials, and the simulation results can provide guidance for studying the neutron irradiation effects of PLZT-based electronic devices.
      Corresponding author: Zhang Shuo, zhangshuo@lzu.edu.cn
    • Funds: Project supported by the National NaturalScience Foundationof China (Grant Nos. 11875154, 12005200), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant No.lzujbky-2019-13).
    [1]

    谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜 2020 物理学报 69 192401Google Scholar

    Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 192401Google Scholar

    [2]

    Hazdra P, Záhlava V, Vobecký J 2014 Nucl. Instrum. Methods Phys. Res., Sect. B 327 124Google Scholar

    [3]

    Sharma R K, Hazdra P, Popelka S 2015 IEEE Trans. Nucl. Sci. 62 534Google Scholar

    [4]

    Rauls M B, Dong W, Huber J E, Lynch C S 2011 Acta Mater. 59 2713Google Scholar

    [5]

    Kumar A, Prasad V V B, Raju K C J, James A R 2016 J. Alloys Compd. 654 95Google Scholar

    [6]

    He H, Tan X 2007 J. Am. Ceram. Soc. 90 2090Google Scholar

    [7]

    Hao X, Zhai J, Kong L B, Xu Z 2014 Prog. Mater. Sci. 63 1Google Scholar

    [8]

    Haertling G H, Land C E 1971 J. Am. Ceram. Soc. 54 1

    [9]

    Sternberg A, Krumina A, Sprogis A, Rubulis A, Grinvalds G, Shebanov L, Weber H W, Klima H, Schwabl H, Dindun S, Ulmanis U 1992 Ferroelectrics 126 233Google Scholar

    [10]

    Bittner R, Humer K, Weber H W, Cakare L, Sternberg A, Lesnyh D. A, Kulikov D V, Trushin Y V 2002 Integr. Ferroelectr. 47 143Google Scholar

    [11]

    Kulikov D V, Trushin Y V, Kharlamov V S, Bittner R, Schmidt A A 2000 Proc. SPIE 4348 264

    [12]

    Sternberg A, Kundzins K, Zauls V, Aulika I, Akare L, Bittner R, Weber H, Humer K, Lesnyh D, Kulikov D 2004 J. Eur. Ceram. Soc. 24 1653Google Scholar

    [13]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R E, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L, Simeone D 2018 J. Nucl. Mater. 512 450Google Scholar

    [14]

    Nordlund K 2019 J. Nucl. Mater. 520 273Google Scholar

    [15]

    Robinson M T, Torrens I M 1974 Phys. Rev. B 9 5008Google Scholar

    [16]

    Zhang S, Nordlund K, Djurabekova F, Granberg F, Zhang Y, Wang T S 2017 Mater. Res. Lett. 5 433Google Scholar

    [17]

    Djurabekova F G, Pugacheva T S, Umarov F F, Yugay S V 2000 International Conference on Ion Implantation Technology Proceedings. Ion Implantation Technology-2000 (Cat. No. 00EX432), 17–22 Sept. 2000 228

    [18]

    Zhang S, Wang B W, Zhang L M, Liu N, Wang T S, Duan B H, Xu X G 2021 J. Phys. D:Appl. Phys. 54 245104Google Scholar

    [19]

    Zhang S, Nordlund K, Djurabekova F, Zhang Y, Velisa G, Wang T S 2016 Phys. Rev. E 94 043319Google Scholar

    [20]

    Zhang S, Pakarinen O H, Backholm M, Djurabekova F, Nordlund K, Keinonen J, Wang T S 2017 J. Phys.: Condens. Matter. 30 015403

    [21]

    Bukonte L, Djurabekova F, Samela J, Nordlund K, Norris S A, Aziz M J 2013 Nucl. Instrum. Methods Phys. Res., Sect. B 297 23Google Scholar

    [22]

    Klaver T P C, Zhang S, Nordlund K 2017 J. Nucl. Mater. 492 113Google Scholar

    [23]

    Agostinelli S, Allison J, Amako K, et al. 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 506 250Google Scholar

    [24]

    Allison J, Amako K, Apostolakis J, et al. 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 835 186Google Scholar

    [25]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [26]

    Nuclear Energy Agency http://www.oecd-nea.org/dbdata/jeff/jeff33/

    [27]

    Mendoza E, Cano-Ott D, Koi T, Guerrero C 2014 IEEE Trans. Nucl. Sci. 61 2357Google Scholar

    [28]

    J. F. Ziegler, J. P. Biersack, Littmark U 1985 The Stopping and Range of Ions in Matter (Pergamon, New York: Pergamon Press)

    [29]

    Ziegler J F http://www.srim.org/

    [30]

    Chadwick M B, Herman M, Obložinský P, et al. 2011 Nucl. Data Sheets 112 2887Google Scholar

  • 图 1  模拟中材料的中子辐照位置示意

    Figure 1.  Schematic diagram of neutron irradiated region in the simulations.

    图 2  3 MeV(a)和10 MeV(b)中子辐照3 cm厚PLZT材料产生的初级反冲原子能谱

    Figure 2.  Energy spectra of primary kinetic atoms produced by 3 MeV (a) and 10 MeV (b) neutron irradiation in PLZT with a thickness of 3 cm.

    图 3  弹性散射和非弹性散射过程引起的反冲原子数目

    Figure 3.  Number of recoils caused by elastic scattering and inelastic scattering.

    图 4  1—14 MeV中子辐照3 cm厚PLZT材料产生的反冲原子数目(对应左侧Y轴的红色点线)和未与材料发生作用的中子数目(对应右侧Y轴的蓝色点线)

    Figure 4.  Number of recoils (corresponding to the red dotted line and the left Y-axis) and the number of neutrons without interaction(corresponding to the blue dotted line and the right Y-axis) during irradiation of neutrons with energies from 1 to 14 MeVin PLZT with a thickness of 3 cm.

    图 5  不同能量、类型的离子在PLZT材料中产生的空位缺陷数目

    Figure 5.  Number of vacancies produced by different types of ions in PLZT.

    图 6  1—14 MeV中子在3 cm厚PLZT材料中平均每个中子产生的空位缺陷数目

    Figure 6.  The average number of vacancy defects inducedby irradiation of neutrons with energies range from1 to14 MeV in PLZT material with a thickness of 3 cm.

    图 7  平均每个1 MeV(a), 3 MeV(b), 10 MeV(c)和14 MeV(d)中子在PLZT材料中产生的空穴缺陷数目随深度的变化

    Figure 7.  The depth distribution of vacancies produced by neutrons with energy of 1 MeV (a), 3 MeV (b), 10 MeV (c) and 14 MeV (d) in PLZT.

    图 8  1—14 MeV中子在1 mm PLZT材料和3 cm PLZT材料中每毫米内的空位缺陷数目

    Figure 8.  Number of vacancies per millimeter produced by neutrons with energies from 1 to 14 MeV in PLZT materials with different thicknesses (1 mm and 3 cm).

  • [1]

    谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜 2020 物理学报 69 192401Google Scholar

    Xie F, Zang H, Liu F, He H, Liao W L, Huang Y 2020 Acta Phys. Sin. 69 192401Google Scholar

    [2]

    Hazdra P, Záhlava V, Vobecký J 2014 Nucl. Instrum. Methods Phys. Res., Sect. B 327 124Google Scholar

    [3]

    Sharma R K, Hazdra P, Popelka S 2015 IEEE Trans. Nucl. Sci. 62 534Google Scholar

    [4]

    Rauls M B, Dong W, Huber J E, Lynch C S 2011 Acta Mater. 59 2713Google Scholar

    [5]

    Kumar A, Prasad V V B, Raju K C J, James A R 2016 J. Alloys Compd. 654 95Google Scholar

    [6]

    He H, Tan X 2007 J. Am. Ceram. Soc. 90 2090Google Scholar

    [7]

    Hao X, Zhai J, Kong L B, Xu Z 2014 Prog. Mater. Sci. 63 1Google Scholar

    [8]

    Haertling G H, Land C E 1971 J. Am. Ceram. Soc. 54 1

    [9]

    Sternberg A, Krumina A, Sprogis A, Rubulis A, Grinvalds G, Shebanov L, Weber H W, Klima H, Schwabl H, Dindun S, Ulmanis U 1992 Ferroelectrics 126 233Google Scholar

    [10]

    Bittner R, Humer K, Weber H W, Cakare L, Sternberg A, Lesnyh D. A, Kulikov D V, Trushin Y V 2002 Integr. Ferroelectr. 47 143Google Scholar

    [11]

    Kulikov D V, Trushin Y V, Kharlamov V S, Bittner R, Schmidt A A 2000 Proc. SPIE 4348 264

    [12]

    Sternberg A, Kundzins K, Zauls V, Aulika I, Akare L, Bittner R, Weber H, Humer K, Lesnyh D, Kulikov D 2004 J. Eur. Ceram. Soc. 24 1653Google Scholar

    [13]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R E, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L, Simeone D 2018 J. Nucl. Mater. 512 450Google Scholar

    [14]

    Nordlund K 2019 J. Nucl. Mater. 520 273Google Scholar

    [15]

    Robinson M T, Torrens I M 1974 Phys. Rev. B 9 5008Google Scholar

    [16]

    Zhang S, Nordlund K, Djurabekova F, Granberg F, Zhang Y, Wang T S 2017 Mater. Res. Lett. 5 433Google Scholar

    [17]

    Djurabekova F G, Pugacheva T S, Umarov F F, Yugay S V 2000 International Conference on Ion Implantation Technology Proceedings. Ion Implantation Technology-2000 (Cat. No. 00EX432), 17–22 Sept. 2000 228

    [18]

    Zhang S, Wang B W, Zhang L M, Liu N, Wang T S, Duan B H, Xu X G 2021 J. Phys. D:Appl. Phys. 54 245104Google Scholar

    [19]

    Zhang S, Nordlund K, Djurabekova F, Zhang Y, Velisa G, Wang T S 2016 Phys. Rev. E 94 043319Google Scholar

    [20]

    Zhang S, Pakarinen O H, Backholm M, Djurabekova F, Nordlund K, Keinonen J, Wang T S 2017 J. Phys.: Condens. Matter. 30 015403

    [21]

    Bukonte L, Djurabekova F, Samela J, Nordlund K, Norris S A, Aziz M J 2013 Nucl. Instrum. Methods Phys. Res., Sect. B 297 23Google Scholar

    [22]

    Klaver T P C, Zhang S, Nordlund K 2017 J. Nucl. Mater. 492 113Google Scholar

    [23]

    Agostinelli S, Allison J, Amako K, et al. 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 506 250Google Scholar

    [24]

    Allison J, Amako K, Apostolakis J, et al. 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 835 186Google Scholar

    [25]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [26]

    Nuclear Energy Agency http://www.oecd-nea.org/dbdata/jeff/jeff33/

    [27]

    Mendoza E, Cano-Ott D, Koi T, Guerrero C 2014 IEEE Trans. Nucl. Sci. 61 2357Google Scholar

    [28]

    J. F. Ziegler, J. P. Biersack, Littmark U 1985 The Stopping and Range of Ions in Matter (Pergamon, New York: Pergamon Press)

    [29]

    Ziegler J F http://www.srim.org/

    [30]

    Chadwick M B, Herman M, Obložinský P, et al. 2011 Nucl. Data Sheets 112 2887Google Scholar

  • [1] Xun Zhi-Peng, Hao Da-Peng. Monte Carlo simulation of bond percolation on square lattice with complex neighborhoods. Acta Physica Sinica, 2022, 71(6): 066401. doi: 10.7498/aps.71.20211757
    [2] Huang Guang-Wei, Wu Kun, Chen Ye, Li Lin-Xiang, Zhang Si-Yuan, Wang Zun-Gang, Zhu Hong-Ying, Zhou Chun-Zhi, Zhang Yi-Yun, Liu Zhi-Qiang, Yi Xiao-Yan, Li Jin-Min. Response to 14 MeV neutrons for single-crystal diamond detectors. Acta Physica Sinica, 2021, 70(20): 202901. doi: 10.7498/aps.70.20210891
    [3] Cheng Yi-Ting, Andrey S. Makarov, Gennadii V. Afonin, Vitaly A. Khonik, Qiao Ji-Chao. Evolution of defect concentration in Zr50–xCu34Ag8Al8Pdx (x = 0, 2) amorphous alloys derived using shear modulus and calorimetric data. Acta Physica Sinica, 2021, 70(14): 146401. doi: 10.7498/aps.70.20210256
    [4] Ren Jie, Ruan Xi-Chao, Chen Yong-Hao, Jiang Wei, Bao Jie, Luan Guang-Yuan, Zhang Qi-Wei, Huang Han-Xiong, Wang Zhao-Hui, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Gu Min-Hao, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng. In-beam γ-rays of back-streaming white neutron source at China Spallation Neutron Source. Acta Physica Sinica, 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [5] Tian Zi-Ning, Ouyang Xiao-Ping, Chen Wei, Wang Xue-Mei, Deng Ning, Liu Wen-Biao, Tian Yan-Jie. Source boundary parameter of Monte Carlo inversion technology based on virtual source principle. Acta Physica Sinica, 2019, 68(23): 232901. doi: 10.7498/aps.68.20191095
    [6] Tian Yong-Shun, Hu Zhi-Liang, Tong Jian-Fei, Chen Jun-Yang, Peng Xiang-Yang, Liang Tian-Jiao. Design of beam shaping assembly based on 3.5 MeV radio-frequency quadrupole proton accelerator for boron neutron capture therapy. Acta Physica Sinica, 2018, 67(14): 142801. doi: 10.7498/aps.67.20180380
    [7] Ye Hong-Jun, Wang Da-Wei, Jiang Zhi-Jun, Cheng Sheng, Wei Xiao-Yong. Ferroelectric phase transition of perovskite SnTiO3 based on the first principles. Acta Physica Sinica, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [8] Zhang Fa-Qiang, Qi Jian-Min, Zhang Jian-Hua, Li Lin-Bo, Chen Ding-Yang, Xie Hong-Wei, Yang Jian-Lun, Chen Jin-Chuan. A method of fast-neutron imaging with energy threshold based on an imaging plate. Acta Physica Sinica, 2014, 63(12): 128701. doi: 10.7498/aps.63.128701
    [9] Yang Yi-Wei, Yan Xiao-Song, Liu Rong, Lu Xin-Xin, Jiang Li, Wang Mei, Lin Ju-Fang. Measurements and analyses of uranium reaction rates on a depleted uranium shell with D-T neutrons. Acta Physica Sinica, 2013, 62(2): 022801. doi: 10.7498/aps.62.022801
    [10] Hua Yu-Chao, Dong Yuan, Cao Bing-Yang. Monte Carlo simulation of phonon ballistic diffusive heat conduction in silicon nanofilm. Acta Physica Sinica, 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [11] Lan Mu, Xiang Gang, Gu Gang-Xu, Zhang Xi. A Monte Carlo simulation study on growth mechanism of horizontal nanowires on crystal surface. Acta Physica Sinica, 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [12] Fan Xiao-Hui, Zhao Xing-Yu, Wang Li-Na, Zhang Li-Li, Zhou Heng-Wei, Zhang Jin-Lu, Huang Yi-Neng. Monte Carlo simulations of the relaxation dynamics of the spatial relaxation modes in the molecule-string model. Acta Physica Sinica, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [13] Zhao Yan, Jiang Yi-Jian. The effect of laser irradiation on ZnO thin films. Acta Physica Sinica, 2010, 59(4): 2679-2684. doi: 10.7498/aps.59.2679
    [14] Chen Shan, Wu Qing-Yun, Chen Zhi-Gao, Xu Gui-Gui, Huang Zhi-Gao. Ferromagnetism of C doped ZnO: first-principles calculation and Monte Carlo simulation. Acta Physica Sinica, 2009, 58(3): 2011-2017. doi: 10.7498/aps.58.2011
    [15] Xiong Kai-Guo, Feng Guo-Lin, Hu Jing-Guo, Wan Shi-Quan, Yang Jie. Monte Carlo simulation of the record-breaking high temperature events of climate changes. Acta Physica Sinica, 2009, 58(4): 2843-2852. doi: 10.7498/aps.58.2843
    [16] Gao Fei, Ryoko Yamada, Mitsuo Watanabe, Liu Hua-Feng. Use of Monte Carlo simulations for the scatter events analysis of PET scanners. Acta Physica Sinica, 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
    [17] Xu Lan-Qing, Li Hui, Xiao Zheng-Ying. Discussion on backscattered photon numbers and their scattering events in a turbid media. Acta Physica Sinica, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [18] He Qing-Fang, Xu Zheng, Liu De-Ang, Xu Xu-Rong. Monte Carlo simulation of the effect of impact ionization in thin-film electroluminescent devices. Acta Physica Sinica, 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [19] Wang Zhi-Jun, Dong Li-Fang, Shang Yong. Monte Carlo simulation of optical emission spectra in electron assisted chemical vapor deposition of diamond. Acta Physica Sinica, 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [20] Wang Jian-Hua, Jin Chuan-En. Application of Monte Carlo simulation to the research of ions transport plasma sheaths of glow discharge. Acta Physica Sinica, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
Metrics
  • Abstract views:  4439
  • PDF Downloads:  89
  • Cited By: 0
Publishing process
  • Received Date:  03 November 2021
  • Accepted Date:  06 December 2021
  • Available Online:  26 January 2022
  • Published Online:  05 April 2022

/

返回文章
返回