Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Evolution of defect concentration in Zr50–xCu34Ag8Al8Pdx (x = 0, 2) amorphous alloys derived using shear modulus and calorimetric data

Cheng Yi-Ting Andrey S. Makarov Gennadii V. Afonin Vitaly A. Khonik Qiao Ji-Chao

Citation:

Evolution of defect concentration in Zr50–xCu34Ag8Al8Pdx (x = 0, 2) amorphous alloys derived using shear modulus and calorimetric data

Cheng Yi-Ting, Andrey S. Makarov, Gennadii V. Afonin, Vitaly A. Khonik, Qiao Ji-Chao
cstr: 32037.14.aps.70.20210256
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Amorphous alloys exhibit unique physical and mechanical properties, which are closely connected with their microstructural heterogeneity. The correlation between structural heterogeneity and mechanical properties is one of the important issues of amorphous alloys. Micro-alloying is an effective way to tune the mechanical and physical properties of amorphous alloys. In the present study, Zr50–xCu34Ag8Al8Pdx (x = 0 and 2) amorphous alloys with ability to form excellent glass are chosen as model alloys. The evolutions of heat flow and shear modulus in different states (as-cast, relaxed and crystalline) with temperature of Zr50–xCu34Ag8Al8Pdx (x = 0 and 2) glass system are studied by differential scanning calorimetry (DSC) and electromagnetic-acoustic transformation (EMAT) technique, respectively. The experiment demonstrates that a decrease of the shear modulus is accompanied by the endothermic heat flow and vice versa. The correlation between the heat flow and shear modulus is investigated according to the interstitialcy theory. The calculations of the interstitialcy defect concentration and activation energy spectra suggest that the microstructure remains stable at relatively low temperatures. When temperature increases, the interstitialcy defect structure is activated. Compared with that in the as-cast state, the interstitialcy defect concentration in the relaxed state is reduced by structural relaxation, indicating that temperature-dependent shear modulus softening is inhibited. At temperatures above glass transition temperature, a rapid growth of interstitialcy defect concentration results in the accelerated shear softening, which is accompanied by significant endothermic heat flow. It is noted that the minor addition of palladium reduces the interstitialcy defect concentration in the Zr50–xCu34Ag8Al8Pdx (x = 0 and 2) metallic glass systems. It is suggested that the introduction of Pd reduces the atomic mobility and increases the characteristic relaxation time. In parallel, the change of shear modulus as a function of the aging time (below the glass transition temperature) is studied by using EMAT equipment. The results indicate that the interstitialcy defect concentration decreases in the physical aging process, which is accompanied by an increase of shear modulus. The interstitialcy defect concentration and shear modulus change towards the quasi-equilibrium state with aging time increasing. A reduction of the interstitialcy defect concentration leads to a decrease of the shear modulus change upon microalloying by Pd into Zr50–x Cu34Ag8Al8Pdx (x = 0 and 2) metallic glass system.
      Corresponding author: Qiao Ji-Chao, qjczy@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51971178), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2019JM-344), and the Russian Science Foundation (Grant No. 20-62-46003)
    [1]

    Qiao J C, Wang Q, Crespo D, Yang Y, Pelletier J M 2017 Chin. Phys. B 26 016402Google Scholar

    [2]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259Google Scholar

    [3]

    Torquato S 2000 Nature 405 521Google Scholar

    [4]

    王军强, 欧阳酥 2017 物理学报 66 176102Google Scholar

    Wang J Q, Ouyang S 2017 Acta Phys. Sin. 66 176102Google Scholar

    [5]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater Sci. 104 250Google Scholar

    [6]

    Wang W H 2012 Prog. Mater Sci. 57 487Google Scholar

    [7]

    王峥, 汪卫华 2017 物理学报 66 176103Google Scholar

    Wang Z, Wang W H 2017 Acta Phys. Sin. 66 176103Google Scholar

    [8]

    Perez J 1988 Polymer 29 483Google Scholar

    [9]

    Perez J 1990 Solid State Ion. 39 69Google Scholar

    [10]

    Spaepen F 1977 Acta Metall. 25 407

    [11]

    Dyre, J C 2008 Rev. Mod. Phys. 78 953

    [12]

    Makarov A S, Khonik V A, Mitrofanov Y P, Granato A V, Joncich D M, Khonik S V 2013 Appl. Phys. Lett. 102 091908Google Scholar

    [13]

    Chen H S 1980 Rep. Prog. Phys. 43 353Google Scholar

    [14]

    Kobelev N P, Khonik V A 2015 J. Non-Cryst. Solids 427 184Google Scholar

    [15]

    Khonik V A 2015 Metals 5 504Google Scholar

    [16]

    Demetriou M D, Harmon J S, Tao M, Duan G, Samwer K, Johnson W L 2006 Phys. Rev. Lett. 97 065502Google Scholar

    [17]

    Granato A V 1992 Phys. Rev. Lett. 68 974Google Scholar

    [18]

    Granato A V 2014 Eur. Phys. J. B 87 18Google Scholar

    [19]

    Khonik V A 2017 Chin. Phys. B 26 016401Google Scholar

    [20]

    Makarov A S, Mitrofanov Y P, Afonin G V, Kobelev N P, Khonik V A 2019 Scripta Mater. 168 10Google Scholar

    [21]

    Hao Q, Qiao J C, Goncharova E V, Afonin G V, Liu M N, Cheng Y T, Khonik V A 2020 Chin. Phys. B 29 86402Google Scholar

    [22]

    Duan Y J, Qiao J C, Crespo D, Goncharova E V, Makarov A S, Afonin G V, Khonik V A 2020 J. Alloys Compd. 830 154564Google Scholar

    [23]

    Jiang Q K, Wang X D, Nie X P, Zhang G Q, Ma H, Fecht H J, Bednarcik J, Franz H, Liu Y G, Cao Q P, Jiang J Z 2008 Acta Mater. 56 1785Google Scholar

    [24]

    Afonin G V, Mitrofanov Y P, Makarov A S, Kobelev N P, Wang W H, Khonik V A 2016 Acta Mater. 115 204Google Scholar

    [25]

    张浪渟, Khonik V A, 乔吉超 2020 力学学报 52 1709Google Scholar

    Zhang L T, Khonik V A, Qiao J C 2020 Chin. J Theor. Appl. Mech. 52 1709Google Scholar

    [26]

    Cheng Y T, Hao Q, Qiao J C, Crespo D, Pineda E, Pelletier J M 2021 J. Non-Cryst. Solids 553 120496Google Scholar

    [27]

    Vasilev A N, Gaidukov Y P 1983 Uspekhi Fizicheskikh Nauk 141 431Google Scholar

    [28]

    Zhang W, Zhang Q, Inoue A 2008 Adv. Eng. Mater. 10 1034Google Scholar

    [29]

    Makarov S, Mitrofanov Y P, Afonin G V, Kobelev N P, Khonik V A 2017 Intermetallics 87 1Google Scholar

    [30]

    Tao K, Qiao J C, He Q F, Song K K, Yang Y 2021 Int. J. Mech. Sci. 201 106469Google Scholar

    [31]

    Khonik S V, Granato A V, Joncich D M, Pompe A, Khonik V A 2008 Phys. Rev. Lett. 100 065501Google Scholar

    [32]

    Ma E 2015 Nat. Mater. 14 547Google Scholar

    [33]

    Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 015504Google Scholar

    [34]

    Shen J, Huang Y J, Sun J F 2007 J. Mater. Res. 22 3067Google Scholar

    [35]

    Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine-Luzgin D V, Carpenter M A, Greer A L 2015 Nature 524 200Google Scholar

    [36]

    Park K W, Lee C M, Wakeda M, Shibutani Y, Falk M L, Lee J C 2008 Acta Mater. 56 5440Google Scholar

    [37]

    Tong Y, Iwashita T, Dmowski W, Bei H, Yokoyama Y, Egami T 2015 Acta Mater. 86 240Google Scholar

    [38]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501Google Scholar

    [39]

    Qiao J C, Yao Y, Pelletier J M, Keer L M 2016 Int. J. Plast. 82 62Google Scholar

  • 图 1  (a) Zr50Cu34Ag8Al8和(b)Zr48Cu34Ag8Al8Pd2非晶合金DSC曲线. Run1为由室温升温至715 K的过程, Run2为室温升温至823 K的过程, Run3为室温升温至823 K的过程. 升温速率为3 K/min; (c) Zr50–xCu34Ag8Al8Pdx(x = 0, 2)非晶合金铸态DSC曲线; (d)升温过程示意图

    Figure 1.  (a) DSC curves of Zr50Cu34Ag8Al8 and (b) Zr48Cu34Ag8Al8Pd2 metallic glasses. Run1, Run2 and Run3 correspond to heating from room temperature up to 715 K, 823 K and 823 K, respectively; (c) DSC curves of Zr50–xCu34Ag8Al8Pdx (x = 0, 2) metallic glasses (as-cast state) on an enlarged scale; (d) schematic diagram of heating process.

    图 2  (a) Zr50Cu34Ag8Al8和(b) Zr48Cu34Ag8Al8Pd2非晶合金剪切模量在3次升温过程中随温度演化过程

    Figure 2.  Evolution of the shear modulus with temperature during three subsequent heating runs of (a) Zr50Cu34Ag8Al8 and (b) Zr48Cu34Ag8Al8Pd2 metallic glasses.

    图 3  Zr50–xCu34Ag8Al8Pdx (x = 0, 2)非晶合金的(a)铸态和弛豫态自间隙缺陷浓度以及(b)自间隙缺陷浓度随温度的变化率(${{{\rm{d}}c(T)} / {{\rm{d}}T}}$)随温度的演化

    Figure 3.  (a) Evolution of the defect concentration in the as-cast and relaxed samples and (b) the rate of defect concentration change (${{{\rm{d}}c(T)} / {{\rm{d}}T}}$) as a function of temperature for Zr50–xCu34Ag8Al8Pdx (x = 0, 2) metallic glasses.

    图 4  Zr50–xCu34Ag8Al8Pdx (x = 0, 2)非晶合金的激活能谱

    Figure 4.  Activation energy spectra for Zr50–xCu34Ag8Al8Pdx (x = 0, 2) metallic glasses.

    图 5  物理时效过程中Zr50–xCu34Ag8Al8Pdx(x = 0, 2)非晶合金剪切模量的变化$g(T)$和自间隙缺陷浓度随物理时效时间的演化过程.

    Figure 5.  Сhange of the shear modulus $g(T)$ and defect concentration with the aging time for Zr50–xCu34Ag8Al8Pdx (x = 0, 2) metallic glasses

  • [1]

    Qiao J C, Wang Q, Crespo D, Yang Y, Pelletier J M 2017 Chin. Phys. B 26 016402Google Scholar

    [2]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259Google Scholar

    [3]

    Torquato S 2000 Nature 405 521Google Scholar

    [4]

    王军强, 欧阳酥 2017 物理学报 66 176102Google Scholar

    Wang J Q, Ouyang S 2017 Acta Phys. Sin. 66 176102Google Scholar

    [5]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater Sci. 104 250Google Scholar

    [6]

    Wang W H 2012 Prog. Mater Sci. 57 487Google Scholar

    [7]

    王峥, 汪卫华 2017 物理学报 66 176103Google Scholar

    Wang Z, Wang W H 2017 Acta Phys. Sin. 66 176103Google Scholar

    [8]

    Perez J 1988 Polymer 29 483Google Scholar

    [9]

    Perez J 1990 Solid State Ion. 39 69Google Scholar

    [10]

    Spaepen F 1977 Acta Metall. 25 407

    [11]

    Dyre, J C 2008 Rev. Mod. Phys. 78 953

    [12]

    Makarov A S, Khonik V A, Mitrofanov Y P, Granato A V, Joncich D M, Khonik S V 2013 Appl. Phys. Lett. 102 091908Google Scholar

    [13]

    Chen H S 1980 Rep. Prog. Phys. 43 353Google Scholar

    [14]

    Kobelev N P, Khonik V A 2015 J. Non-Cryst. Solids 427 184Google Scholar

    [15]

    Khonik V A 2015 Metals 5 504Google Scholar

    [16]

    Demetriou M D, Harmon J S, Tao M, Duan G, Samwer K, Johnson W L 2006 Phys. Rev. Lett. 97 065502Google Scholar

    [17]

    Granato A V 1992 Phys. Rev. Lett. 68 974Google Scholar

    [18]

    Granato A V 2014 Eur. Phys. J. B 87 18Google Scholar

    [19]

    Khonik V A 2017 Chin. Phys. B 26 016401Google Scholar

    [20]

    Makarov A S, Mitrofanov Y P, Afonin G V, Kobelev N P, Khonik V A 2019 Scripta Mater. 168 10Google Scholar

    [21]

    Hao Q, Qiao J C, Goncharova E V, Afonin G V, Liu M N, Cheng Y T, Khonik V A 2020 Chin. Phys. B 29 86402Google Scholar

    [22]

    Duan Y J, Qiao J C, Crespo D, Goncharova E V, Makarov A S, Afonin G V, Khonik V A 2020 J. Alloys Compd. 830 154564Google Scholar

    [23]

    Jiang Q K, Wang X D, Nie X P, Zhang G Q, Ma H, Fecht H J, Bednarcik J, Franz H, Liu Y G, Cao Q P, Jiang J Z 2008 Acta Mater. 56 1785Google Scholar

    [24]

    Afonin G V, Mitrofanov Y P, Makarov A S, Kobelev N P, Wang W H, Khonik V A 2016 Acta Mater. 115 204Google Scholar

    [25]

    张浪渟, Khonik V A, 乔吉超 2020 力学学报 52 1709Google Scholar

    Zhang L T, Khonik V A, Qiao J C 2020 Chin. J Theor. Appl. Mech. 52 1709Google Scholar

    [26]

    Cheng Y T, Hao Q, Qiao J C, Crespo D, Pineda E, Pelletier J M 2021 J. Non-Cryst. Solids 553 120496Google Scholar

    [27]

    Vasilev A N, Gaidukov Y P 1983 Uspekhi Fizicheskikh Nauk 141 431Google Scholar

    [28]

    Zhang W, Zhang Q, Inoue A 2008 Adv. Eng. Mater. 10 1034Google Scholar

    [29]

    Makarov S, Mitrofanov Y P, Afonin G V, Kobelev N P, Khonik V A 2017 Intermetallics 87 1Google Scholar

    [30]

    Tao K, Qiao J C, He Q F, Song K K, Yang Y 2021 Int. J. Mech. Sci. 201 106469Google Scholar

    [31]

    Khonik S V, Granato A V, Joncich D M, Pompe A, Khonik V A 2008 Phys. Rev. Lett. 100 065501Google Scholar

    [32]

    Ma E 2015 Nat. Mater. 14 547Google Scholar

    [33]

    Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 015504Google Scholar

    [34]

    Shen J, Huang Y J, Sun J F 2007 J. Mater. Res. 22 3067Google Scholar

    [35]

    Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine-Luzgin D V, Carpenter M A, Greer A L 2015 Nature 524 200Google Scholar

    [36]

    Park K W, Lee C M, Wakeda M, Shibutani Y, Falk M L, Lee J C 2008 Acta Mater. 56 5440Google Scholar

    [37]

    Tong Y, Iwashita T, Dmowski W, Bei H, Yokoyama Y, Egami T 2015 Acta Mater. 86 240Google Scholar

    [38]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501Google Scholar

    [39]

    Qiao J C, Yao Y, Pelletier J M, Keer L M 2016 Int. J. Plast. 82 62Google Scholar

  • [1] LIANG Shuyi, ZHANG Langting, ZHU Hangchen, XING Guanghui, QIAO Jichao. Coupling mechanism between high-temperature rheological behavior and dynamic relaxation in metallic glasses. Acta Physica Sinica, 2025, 74(13): 136401. doi: 10.7498/aps.74.20250392
    [2] Qin Hai-Rong, Hou Yi-Jie, Yang Kun, Jin Cancan, Lü Yong-Jun. Topological phase transition in metallic glass formers. Acta Physica Sinica, 2025, 74(16): . doi: 10.7498/aps.74.20250513
    [3] ZHU Fan, ZHOU Jiong, HUANG Huang, WEN Wenxin, YE Jieyu, YAN Zhenzhen. Microstructure of metallic glasses at mesoscopic scale: spatial heterogeneity in correlating atomic configurations with macroscopic properties. Acta Physica Sinica, 2025, 74(16): . doi: 10.7498/aps.74.20250584
    [4] Meng Shao-Yi, Hao Qi, Wang Bing, Duan Ya-Juan, Qiao Ji-Chao. Effects of cooling rate on β relaxation process and stress relaxation of La-based amorphous alloys. Acta Physica Sinica, 2024, 73(3): 036101. doi: 10.7498/aps.73.20231417
    [5] Zhang Jian, Hao Qi, Zhang Lang-Ting, Qiao Ji-Chao. Probing microstructural heterogeneity of La-based amorphous alloy under versatile mechanical stimuli. Acta Physica Sinica, 2024, 73(4): 046101. doi: 10.7498/aps.73.20231421
    [6] Huang Bei-Bei, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao. Dynamical relaxation and stress relaxation of Zr-based metallic glass. Acta Physica Sinica, 2023, 72(13): 136101. doi: 10.7498/aps.72.20230181
    [7] Meng Shao-Yi, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao. The β relaxation process of La-based amorphous alloy: Effect of annealing and strain amplitude. Acta Physica Sinica, 2023, 72(7): 076101. doi: 10.7498/aps.72.20222389
    [8] Ping Zhi-Hai, Zhong Ming, Long Zhi-Lin. Yield behavior of amorphous alloy based on percolation theory. Acta Physica Sinica, 2017, 66(18): 186101. doi: 10.7498/aps.66.186101
    [9] Ke Hai-Bo, Pu Zhen, Zhang Pei, Zhang Peng-Guo, Xu Hong-Yang, Huang Huo-Gen, Liu Tian-Wei, Wang Ying-Min. Research progress in U-based amorphous alloys. Acta Physica Sinica, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [10] Chen Na, Zhang Ying-Qi, Yao Ke-Fu. Transparent magnetic semiconductors from ferromagnetic amorphous alloys. Acta Physica Sinica, 2017, 66(17): 176113. doi: 10.7498/aps.66.176113
    [11] Liu Yan-Hui. Combinatorial fabrication and high-throughput characterization of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [12] Feng Tao, Horst Hahn, Herbert Gleiter. Progress of nanostructured metallic glasses. Acta Physica Sinica, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [13] Sun Xing, Mo Guang, Zhao Lin-Zhi, Dai Lan-Hong, Wu Zhong-Hua, Jiang Min-Qiang. Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotron small angle X-ray scattering. Acta Physica Sinica, 2017, 66(17): 176109. doi: 10.7498/aps.66.176109
    [14] Guan Peng-Fei, Wang Bing, Wu Yi-Cheng, Zhang Shan, Shang Bao-Shuang, Hu Yuan-Chao, Su Rui, Liu Qi. Heterogeneity: the soul of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [15] Wang Zheng, Wang Wei-Hua. Flow unit model in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [16] Bian Xi-Lei, Wang Gang. Ion irradiation of metallic glasses. Acta Physica Sinica, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [17] Hou Ri-Li, Peng Jian-Xiang, Jing Fu-Qian. A constitutive model for predicting shear modulus of metals using aluminum as the prototype. Acta Physica Sinica, 2009, 58(9): 6413-6418. doi: 10.7498/aps.58.6413
    [18] Yan Zhi-Jie, Li Jin-Fu, Zhou Yao-He, Wu Yan-Qing. Indentation-induced crystallization in a metallic glass. Acta Physica Sinica, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [19] Shi Hui-Gang, Fu Jun-Li, Xue De-Sheng. Magnetic properties of amorphous Fe89.7P10.3 alloy nanowire arrays. Acta Physica Sinica, 2005, 54(8): 3862-3866. doi: 10.7498/aps.54.3862
    [20] Hu Jian-Bo, Yu Yu-Ying, Dai Cheng-Da, Tan Hua. Shear modulus of aluminum under shock loading. Acta Physica Sinica, 2005, 54(12): 5750-5754. doi: 10.7498/aps.54.5750
Metrics
  • Abstract views:  6641
  • PDF Downloads:  78
  • Cited By: 0
Publishing process
  • Received Date:  03 February 2021
  • Accepted Date:  26 February 2021
  • Available Online:  15 July 2021
  • Published Online:  20 July 2021

/

返回文章
返回